fbpx
СОДЕРЖАНИЕ
0
01 января 2021

ТП-05

Одной из «изюминок» конструкции ТП-05 было использование вдоль вагона цепи из небольших магнитов. При его движении датчики измеряли величину зазора между вагоном и дорогой, а система меняла силу тока на конкретных магнитах, увеличивая или уменьшая их отталкивание. Тем самым компенсировались неровности дороги и обеспечивалась плавность хода.

Маглев имел алюминиевый корпус, весил 18 т и мог перевозить 18 человек. В принципе, мог и больше, просто остаток объёма был занят дополнительным испытательным и измерительным оборудованием. Изначально планировалось испытывать ТП-05 на скоростях до 100 км/ч.

Ереванский маглев должен был стать не только испытательной линией, но и своеобразной технологической витриной. Даже выбор Абовяна в качестве конечной точки маршрута был не случаен: в этом небольшом городе создавались высокотехнологичные производства, а немалая часть населения относилась к научно-технической интеллигенции.

Ходовая часть.

Нам нужно было «догнать Запад» — в 1984-м в Великобритании запустили первый в мире коммерческий маглев, с жалкой протяжённостью трассы в 600 м, и в том же году в Западной Германии запустили испытательную линию беспилотных маглевов длиной 31,5 км.

У нас были все шансы стать одной из первых стран, создающих и эксплуатирующих маглевы. В 1986-м у нас началось возведение опытной линии длиной 3,2 км. Запуск в эксплуатацию советского маглева был запланировано на 1991 год. Сначала считалось, что вагоны будут перемещаться со скоростью 250 км/ч и перевозить по 64 человека. То есть 16 километров от Еревана до Абовяна маглев должен был пролетать примерно за четыре минуты. Но из-за доступной мощности тяговой электроподстанции, которая должна была питать линию электричеством, максимальную скорость пришлось снизить до 180 км/ч.

В 1987-м ТП-05 даже сняли в фантастической теленовелле «С роботами не шутят».

Увы, но все планы пошли прахом. Через два года после начала строительства линии, в 1988 году произошло Спитакское землетрясение. За полминуты с лица земли был стёрт город Спитак и десятки деревень, под завалами в течение нескольких дней погибло не менее 25 тыс. человек, многие промышленные предприятия лежали в руинах. На восстановление Армении были брошены силы всей страны. Кроме того, в 1987-89-м годах стремительно раскручивался маховик Нагорно-Карабахского конфликта. Какой уж тут маглев… А в 1991-м не стало и СССР.

Но удивительное дело — ТП-05 умудрился пережить 1990-е. Он до сих пор стоит в том же цехе, где его собрали. Его не растащили по частям, не распилили на цветмет. Говорят, так и стоит под полиэтиленовой плёнкой, немного подреставрировать — и хоть сейчас в музей транспорта.

Практическая реализация

Поезд на магнитной подушке Linimo, эксплуатация которого началась в марте 2005 года, был разработан компанией Chubu HSST и до сих пор используется в Японии. Он курсирует между двумя городами префектуры Айти. Протяженность полотна, над которым парит маглев составляет около 9 км (9 станций). При этом максимальная скорость Linimo равна 100 км/ч. Это не помешало ему только в течение первых трех месяцев с момента запуска перевезти более 10 млн пассажиров.

Более известным является шанхайский маглев, созданый немецкой компанией Transrapid и введенный в эксплуатацию 1 января 2004 года. Эта железнодорожная линия на магнитном подвесе соединяет станцию шанхайского метро Лунъян Лу с международным аэропортом Пудун. Общее расстояние составляет 30 км, поезд преодолевает его приблизительно за 7,5 мин, разгоняясь до скорости 431 км/ч.

Еще одна железнодорожная линия на магнитном подвесе успешно эксплуатируется в городе Тэджон, Южная Корея. UTM-02 стал доступен пассажирам 21 апреля 2008 года, а на его разработку и создание ушло 14 лет. Железнодорожная линия на магнитном подвесе соединяет Национальный музей науки и выставочный парк, расстояние между которыми всего лишь 1 км.

Среди поездов на магнитной подушке, эксплуатация которых начнется в ближайшем будущем, стоит отметить Maglev L0 в Японии, его испытания были возобновлены совсем недавно. Ожидается, что к 2027 году он будет курсировать по маршруту Токио – Нагоя.

Shanghai Maglev – All You Need to Know

This page will guide you through the most important bits of the Shanghai Maglev, whether you are only interested in the background or you would like to use it. Speed and costs, construction and advantages of the technology and ticket information.

Photo by Cecil Lee

Tickets

At the station, you can buy a standard single ticket for RMB 50 or about $8. First-class is known as “VIP”. If you want these, you will pay twice the normal price and get to sit in the VIP seats which are larger and more luxurious.

There is no wifi onboard and features are limited to airline-style reading light. But this seems appropriate considering the journey time is only 7 minutes 20 seconds (or 8 minutes 10 seconds depending on the hour).

If you carry a Great Wall credit card you can buy your ticket from a special window and have express access to and from the train. Present the staff with a plane ticket for the same day as your travel and you will get 20% off the price of your maglev ticket.

Trains operate between 6:45 am and 9:40 pm and run every ten minutes.

Photo by Dennis Kruyt

Construction

The system was built by Transrapid International, a German company who teamed-up with Shanghai authorities to create this, the world’s first commercial maglev train line. Work began in 2001 and the first passengers took their seats in 2004.

The total cost of the venture was $1.58 billion which sounds like a lot but, according to the Shanghai Transport Centre, the cost per kilometer of the track was about half of what it would have cost to construct a traditional metro system.

Photo by Jody McIntyre

Photo by Remko Tanis

Data

The Shanghai Maglev covers 30km between Pudong Airport and the Lujiazui financial district in seven minutes reaching top speeds of 431kmph. However, trains are capable of going much faster. During a series of tests carried out in 2003, a five-carriage Shanghai Maglev train recorded a top speed of 501kmph (311 mph).

To date, the Shanghai Maglev has carried 1.5 million passengers and covered a commercial distance of over 1 million kilometers.

Photo by Mr Thinktank

Photo by Harry Chen

Advantages

The Shanghai Maglev system is currently rated as one of the safest transportation systems in the world with over 300 safety assessments carried out and passed since its formation. Safety is further overseen by an independent body that closely monitors all systems. Since opening in 2004 there has only been one mishap, in 2006, where a malfunctioning battery started a small fire. No-one was hurt.

The Shanghai Maglev is quieter than normal trains, more economical with energy, and does not pollute the environment. Some critics have claimed that it emits harmful radiation but tests have proven such claims false. In fact, the Shanghai Maglev emits less radiation than a single hairdryer.

The trains float above the tracks which mean there is far less wear and tear on the lines so the maglev requires far less maintenance than normal trains.

Photo by foam

First Class

Photo by Max Talbot Minkin

Second Class

Photo by by Remko Tanis

Photo by Erwyn van der Meer

Поезд на магнитной подушке, летающий поезд, маглев.

Технология находится в процессе разработки!

Поезд на магнитной подушке – летающий поезд, магнитоплан или маглев – это поезд, удерживаемый над полотном дороги, движимый и управляемый силой электромагнитного либо магнитного поля.

Описание:

Поезд на магнитной подушке – летающий поезд, магнитоплан или маглев (от англ. magnetic levitation – «магнитная левитация») – это поезд, удерживаемый над полотном дороги, движимый и управляемый силой электромагнитноголибо магнитного поля.

В отличие от традиционных железнодорожных поездов, в процессе движения маглев не касается поверхности рельса. Поэтому скорость данного транспорта может быть сопоставима со скоростью самолета. На сегодняшний день максимальная скорость такого поезда – 581 км/ч (Япония).

Поезд на электромагнитной подвеске (EMS) :

Электромагнитная подвеска (EMS) позволяет поезду левитировать, используя электромагнитное поле с изменяющейся по времени силой. Система представляет собой путь, сделанный из проводника и систему электромагнитов, установленных на поезде.

— магнитные поля внутри и снаружи транспортного средства меньше, чем у системы EDS,

— экономически выгодная реализуемая и доступная технология,

— высокие скорости (500 км/ч),

— нет нужды в дополнительных системах подвески.

— нестабильность: требуется постоянный контроль и корректировка колебания магнитного поля путей и состава,

— процесс выравнивания по допускам внешними средствами может привести к нежелательной вибрации.

Поезд на электродинамической подвеске (EDS):

Система на электродинамической подвеске (EDS) создает левитацию изменяющимся магнитным полем в путях и поля, создаваемого магнитами на борту состава поезда.

— развитие сверхбольших скоростей (603 км/ч) и способность выдерживать большие нагрузки.

—  невозможность левитировать на низких скоростях, необходимость в большой скорости, чтобы была достаточно отталкивающая сила хотя бы для удержания на весу поезда (поэтому подобные поезда используют колеса),

— сильное магнитное излучение вредно и небезопасно для пассажиров со слабым здоровьем и с кардиостимуляторами, для магнитных носителей данных.

Системы магнитной левитации поезда на постоянных магнитах Inductrack:

В настоящее время актуальной к воплощению является система на постоянных магнитах Inductrack, которая является разновидностью системы EDS.

— потенциально самая экономичная система,

— низкая мощность для активации магнитов,

— магнитное поле локализовано ниже вагона,

— поле левитации генерируется уже при скорости 5 км/ч,

— при сбое питания вагоны останавливаются безопасно,

— множество постоянных магнитов может оказаться более эффективным, чем электромагниты.

— требуются колеса или специальный сегмент пути, поддерживающий поезд при его остановке.

Система RusMaglev:

Левитация RusMaglev является российской разработкой. Левитация создается постоянными магнитами (неодим-железо-бор) на борту состава поезда. Пути выполнены из алюминия. Система не требует абсолютно никакого подвода электричества.

— экономичнее высокоскоростной магистрали,

— не требуется электричества,

— высокие скорости — более 400 км/ч,

— поезд левитирует при нулевой скорости,

— перевозка грузов в 2 раза дешевле, чем перевозка грузов по существующей железной дороге. 

Примечание: Фото https://www.pexels.com

Магнитная подушка. Как это работает?

Примерная схема вагона на магнитной подушке

Слово Маглев – сокращенно от магнитная левитация (magnetig levitation, англ.), то есть поезд как бы левитирует над полотном дороги под действием мощного электромагнитного поля.

К низу каждого вагона к стальному обхвату (4) прикреплены управляемые электронным способом электромагниты (1). Также магниты расположены в нижней части специального рельса (2). При взаимодействии магнитов поезд зависает над рельсом в одном сантиметре. Есть также магниты, отвечающие за боковое выравнивание (3). Обмотка, уложенная вдоль пути, создает магнитное поле, приводящее поезд в движение.

Поезд едет без машиниста. Управление осуществляется из центра управления с помощью компьютеров. Электрический ток подается из центра управления только на тот участок, по которому движется в данный момент поезд. Для торможения магнитное поле меняет свой вектор.

Достоинства и недостатки

В этих словах заключена одна из причин, почему таких поездов не понаделали всюду.

Дорого обходится строительство и обслуживание специальной колеи. Например, строительство Шанхайского Маглева было дополнительно осложнено заболоченной местностью. Каждая опора трассы уложена на специальную бетонную подушку, упирающуюся в скальное основание. Местами такая подушка достигает 85 метров толщины! В итоге эти 30 км магнитной дороги обошлись в 10 млрд юаней.

К тому же по этой дороге уже нельзя пустить другой транспорт. Это отличает его от путей, построенных для скоростных поездов – по ним все равно могут ехать и обычные пассажирские поезда.

Теперь о приятном. Главным плюсом Маглева является, конечно, же скорость. За короткое время после старта поезд разгоняется до 430 км в час.

Сравнительно низкое потребление электроэнергии – в разы меньше, чем у автомобиля или самолета. Соответственно меньше вреда окружающей среде.

Так как сильно уменьшено трение деталей, то и затраты на эксплуатацию такого поезда меньше.

Проведенные испытания показали, что магнитное поле в поезде даже слабее, чем в обычных поездах. Значит, мощные магниты не опасны для пассажиров, в том числе с электронным стимулятором сердца.

На случай потери электропитания в поезде установлены батареи, на которых срабатывают специальные тормоза. Они создают магнитное поле с обратным вектором, и скорость поезда снижается до 10 км в час, и в конце концов поезд останавливается и опускается на рельсы.

Реализация

M-Bahn в Берлине

Это первая система Маглев, которая была построена в 1980 году. Дорога имеет длину в 1.6 км и соединяет между собою три станции. Запуск этой дороги состоялся 28 августа 1989 года. На протяжении 9 лет длились испытания. Из-за того, что магнитная дорога перекрывала важный участок метро ее, демонтировали в 31 июля 1991 года.

Бирмингем

Это не скоростной Маглев-челнок. Он ходил от Бирмингемского аэропорта до ближайшей железнодорожной станции с 1984 по 1995 год. Длина трассы составляла всего 600 метров, а высота подвеса 1.5 см. Дорога проработала на протяжении 10 лет. После этого была закрыта по жалобам пассажиров.

Шанхай

Немецкую компанию Transrapid совершенно не отпугнула первая неудача в Берлине. Дочерние предприятия Siemens AG и ThyssenKrup не отказывались от разработки магнитной железной дороги. В результате длительной работы компании получили заказ от китайского правительства на строительство высокоскоростной трассы от Шанхайского аэропорта Пудун до Шанхая.

Высокоскоростной Маглев в Шанхае

Эта дорога была открыта в 2002 году и ее продолжительность составила 30 км. В будущем правительство планирует ее удлинить до старого аэропорта Хунцяо и далее на юго-запад Ханчжоу. После этого ее продолжительность составит 175 километров.

Япония

В Японии испытывается дорога, которая расположилась в окрестностях префектуры Яманаси. Ее строительство происходило по технологии JR-Maglev. В процессе проведения испытаний MLX01-901 с пассажирами удалось добиться скорости в 581 км/час.

К открытию выставки EXPO 2005 в эксплуатацию также была введена еще одна новая трасса, которая имеет протяжность в 9 км и состоит из 9 станций. Поезда, которые работают на этой линии изготовлены компанией Chubu HSST Developmtnt Corp.

Credits

New World Encyclopedia writers and editors rewrote and completed the Wikipedia article
in accordance with New World Encyclopedia standards. This article abides by terms of the Creative Commons CC-by-sa 3.0 License (CC-by-sa), which may be used and disseminated with proper attribution. Credit is due under the terms of this license that can reference both the New World Encyclopedia contributors and the selfless volunteer contributors of the Wikimedia Foundation. To cite this article click here for a list of acceptable citing formats.The history of earlier contributions by wikipedians is accessible to researchers here:

Maglev train  history

The history of this article since it was imported to New World Encyclopedia:

History of “Maglev train”

Note: Some restrictions may apply to use of individual images which are separately licensed.

Technology

There are two primary types of maglev technology:

  • electromagnetic suspension (EMS) uses the attractive magnetic force of a magnet beneath a rail to lift the train up.
  • electrodynamic suspension (EDS) uses a repulsive force between two magnetic fields to push the train away from the rail.

Electromagnetic suspension

In current EMS systems, the train levitates above a steel rail while electromagnets, attached to the train, are oriented toward the rail from below. The electromagnets use feedback control to maintain a train at a constant distance from the track.

Electrodynamic suspension

EDS Maglev Propulsion via propulsion coils

In Electrodynamic suspension (EDS), both the rail and the train exert a magnetic field, and the train is levitated by the repulsive force between these magnetic fields. The magnetic field in the train is produced by either electromagnets (as in JR-Maglev) or by an array of permanent magnets (as in Inductrack). The repulsive force in the track is created by an induced magnetic field in wires or other conducting strips in the track.

At slow speeds, the current induced in these coils and the resultant magnetic flux is not large enough to support the weight of the train. For this reason the train must have wheels or some other form of landing gear to support the train until it reaches a speed that can sustain levitation.

Propulsion coils on the guideway are used to exert a force on the magnets in the train and make the train move forwards. The propulsion coils that exert a force on the train are effectively a linear motor: An alternating current flowing through the coils generates a continuously varying magnetic field that moves forward along the track. The frequency of the alternating current is synchronized to match the speed of the train. The offset between the field exerted by magnets on the train and the applied field create a force moving the train forward.

Each implementation of the magnetic levitation principle for train-type travel involves advantages and disadvantages. Time will tell as to which principle, and whose implementation, wins out commercially.

Разрабатываемая технология

Третьей системой, которая в настоящее время существует лишь на бумаге, является использование в варианте EDS постоянных магнитов, которые для активации не нуждаются в подаче энергии. Еще совсем недавно считалось, что это невозможно. Исследователи полагали, что у постоянных магнитов нет такой силы, которая способна вызвать левитацию поезда. Однако этой проблемы удалось избежать. Для ее решения магниты поместили в «массив Хальбаха». Подобное расположение приводит к созданию магнитного поля не под массивом, а над ним. Это способствует поддержанию левитации состава даже на скорости около пяти километров в час.

The Japanese Maglev train route

In 2009, the Maglev system was approved and entered commercial construction. The linear Chuo Shinkansen line is planned to link Tokyo and Nagoya by the year 2027. The trip is expected to take only forty minutes – faster than either flying between the two cities or taking the one and a half hour trip on the current Tokaido Line, available with the Japan Rail Pass. The proposed route will include stops at stations in Shinagawa, Sagamihara, Kofu, Iida, and Nakatsugawa.

The original goal of the Maglev project was to produce a train that could cover the route from Tokyo to Osaka in less than one hour. This will be achieved when the Maglev line is extended from Nagoya to Osaka, expected to be in operation by 2045.

Eighty percent of the 286 kilometers (177 mile) Maglev bullet train track will be located underground, passing under urban sprawl and mountainous terrain. The project is expected to cost the equivalent of 55 billion dollars.

When completed, the train will include sixteen carriages capable of holding one thousand passengers. At present, the public have been invited to take part on Maglev test rides. Tourists can visit the SC Maglev Parkway in Nagoya or the Yamanashi Prefectural Maglev Exhibition Center near the town of Otsuki to learn more and view Maglev test runs.

Proposals

Many maglev systems have been proposed in various nations of North America, Asia, and Europe. Many of the systems are still in the early planning stages, or, in the case of the transatlantic tunnel, mere speculation. However, a few of the following examples have progressed beyond that point.

United Kingdom

London – Glasgow: A maglev line has recently been proposed in the United Kingdom from London to Glasgow with several route options through the Midlands, Northwest and Northeast of England and is reported to be under favorable consideration by the government. A further high speed link is also being planned between Glasgow to Edinburgh though there is no settled technology for this concept yet, i.e., (Maglev/Hi Speed Electric etc)

Japan

TokyoーNagoyaーOsaka

The Chūō Shinkansen route (bold yellow and red line) and existing Tōkaidō Shinkansen route (thin blue line)

The master plan for the Chuo Shinkansen bullet train system was finalized based on the Law for Construction of Countrywide Shinkansen. The Linear Chuo Shinkansen Project aims to realize this plan through utilization of the Superconductive Magnetically Levitated Train, which connects Tokyo and Osaka by way of Nagoya, the capital city of Aichi in approximately one hour at a speed of 500km/h.

This new high speed maglev line is planned to become operational in 2027, with construction starting 2017.

Venezuela

Caracas – La Guaira: A maglev train is scheduled to be built this year connecting the capital city Caracas to the main port town of La Guaira and Simón Bolívar International Airport. Due to the extremely mountainous conditions which exist over this path, with traditional rail extensive use of tunnelling and bridging is required. Maglev systems can negotiate altitudes of up to 10 percent, much steeper than those negotiable by standard rail systems, and as it may simply be able to climb over obstacles rather than be required to tunnel through or bridge over, this may make the maglev proposal more economically sound. The system is slated to be a stand-alone system of about 15 km.

China

Shanghai – Hangzhou: China has decided to extend the world’s first commercial Transrapid line between Pudong airport and the city of Shanghai initially by some 35 kilometers to Hong Qiao airport before the World Expo 2010 and then, in an additional phase, by 200 kilometers to the city of Hangzhou (Shanghai-Hangzhou Maglev Train), becoming the first inter-city Maglev rail line in commercial service in the world. The line will be an extension of the Shanghai airport Maglev line.

Talks with Germany and Transrapid Konsortium about the details of the construction contracts have started. On March 7 2006, the Chinese Minister of Transportation was quoted by several Chinese and Western newspapers as saying the line was approved.

United States

California-Nevada Interstate Maglev: High-speed maglev lines between major cities of southern California and Las Vegas are also being studied via the California-Nevada Interstate Maglev Project. This plan was originally supposed to be part of an I-5 or I-15 expansion plan, but the federal government has ruled it must be separated from interstate public work projects.

Since the federal government decision, private groups from Nevada have proposed a line running from Las Vegas to Los Angeles with stops in Primm, Nevada; Baker, California; and points throughout Riverside County into Los Angeles. Southern California politicians have not been receptive to these proposals; many are concerned that a high speed rail line out of state would drive out dollars that would be spent in state “on a rail” to Nevada.

Baltimore-Washington D.C. Maglev: A 64 km project has been proposed linking Camden Yards in Baltimore and Baltimore-Washington International (BWI) Airport to Union Station in Washington, D.C. It is in demand for the area due to its current traffic/congestion problems. The Baltimore proposal is competing with the above-referenced Pittsburgh proposal for a $90 million federal grant.

Достоинства

Какие достоинства у поездов маглев?

  1. Высокая скорость делает такие поезда лидерами наземного транспорта.
  2. Эффективное использование электроэнергии по сравнению с действующими поездами на электрической тяге и электромобилями.
  3. Низкие затраты в эксплуатации из-за отсутствия трущихся деталей, таких как колёса, тормозные накладки, рельсы.
  4. Возможности увеличения скорости до нескольких тысяч км/час при движении поезда в вакуумной трубе. Эксперименты по такому виду передвижения проводились ещё первооткрывателями, но практическое применение требует новых технологий и огромных капиталовложений.
  5. Отсутствие шума обычного поезда: стук колёс на стыках рельс, звуки от трения колёс о рельсы.

Economics

The Shanghai maglev cost 9.93 billion yuan (US$1.2 billion) to build. This total includes infrastructure capital costs such as manufacturing and construction facilities, and operational training. At 50 yuan per passenger and the current 7,000 passengers per day, income from the system is incapable of recouping the capital costs (including interest on financing) over the expected lifetime of the system, even ignoring operating costs.

China aims to limit the cost of future construction extending the maglev line to approximately 200 million yuan (US$24.6 million) per kilometer. These costs compare competitively with airport construction (for example, Hong Kong Airport cost US$20 billion to build in 1998) and eight-lane Interstate highway systems that cost around US$50 million per mile in the US.

While high-speed maglevs are expensive to build, they are less expensive to operate and maintain than traditional high-speed trains, planes or intercity buses. Data from the Shanghai maglev project indicates that operation and maintenance costs are covered by the current relatively low volume of 7,000 passengers per day. Passenger volumes on the Pudong International Airport line are expected to rise dramatically once the line is extended from Longyang Road metro station all the way to Shanghai’s downtown train depot.

The proposed Chūō Shinkansen maglev in Japan is estimated to cost approximately US$82 billion to build.

The only low-speed maglev (100 km/h) currently operational, the Japanese Linimo HSST, cost approximately US$100 million/km to build. Besides offering improved O&M costs over other transit systems, these low-speed maglevs provide ultra-high levels of operational reliability and introduce little noise and zero air pollution into dense urban settings.

As maglev systems are deployed around the world, experts expect construction costs to drop as new construction methods are perfected.

Технология

На данный момент существует 3 основных технологии магнитного подвеса поездов:

  1. На сверхпроводящих магнитах (электродинамическая подвеска, EDS)
  2. На электромагнитах (электромагнитная подвеска, EMS)
  3. На постоянных магнитах; это новая и потенциально самая экономичная системa.

Состав левитирует за счёт отталкивания одинаковых магнитных полюсов и, наоборот, притягивания противоположных полюсов. Движение осуществляется линейным двигателем, расположенным либо на поезде, либо на пути, либо и там, и там. Серьёзной проблемой проектирования является большой вес достаточно мощных магнитов, поскольку требуется сильное магнитное поле для поддержания в воздухе массивного состава.

Наиболее активные разработки маглева ведут Германия, Япония, Китай, и Южная Корея.

Поездка в поезде Transrapid по маршруту Шанхай — Аэропорт Пудун — Шанхай. Виды из салона и кабины поезда

Достоинства

  • Самая высокая скорость из всех видов общественного наземного транспорта.
  • Достаточно низкое потребление электроэнергии (энергия у маглева расходуется в три раза эффективнее, чем у автомобиля и в пять раз — чем у самолёта).
  • Снижение эксплуатационных затрат в связи со значительным уменьшением трения деталей.
  • Огромные перспективы по достижению скоростей, многократно превышающих скорости, используемые в реактивной авиации при уменьшении аэродинамического сопротивления путём помещения состава в вакуумный тоннель. В связи с этим прорабатываются проекты по использованию магнитных ускорителей в качестве средства вывода полезной нагрузки в космос.
  • Низкий шум.
  • КПД данного поезда выше в сравнении с КПД современных поездов[источник не указан 1111 дней].

Недостатки

  • Высокая стоимость создания и обслуживания колеи (стоимость постройки одного километра маглев-колеи сопоставима с проходкой километра тоннеля метро закрытым способом).
  • Рельсовые пути стандартной ширины, перестроенные под скоростное движение, остаются доступными для обычных пассажирских и пригородных поездов. Путь маглева ни для чего другого не пригоден; потребуются дополнительные пути для низкоскоростного сообщения.
  • Электромагнитное загрязнение. А также не нашедший на данный момент подтверждения, который гипотетически мог бы негативно воздействовать на окружающую среду и здоровье людей. Возможны помехи в работе электроприборов.

История становления

Первые страницы истории маглев были заполнены рядами патентов, полученных в начале XX века в разных странах. Еще в 1902 году патентом на конструкцию поезда, оснащенного линейным двигателем, отметился немецкий изобретатель Альфреда Зейден. А уже спустя четыре года Франклин Скотт Смит разработал еще один ранний прототип поезда на электромагнитном подвесе. Немного позже, в период с 1937 года по 1941 год, еще нескольких патентов относящихся к поездам, оснащенным линейными электродвигателями, получил немецкий инженер Герман Кемпер. К слову, подвижные составы Московской монорельсовой транспортной системы, построенной в 2004 г., используют для движения асинхронные линейные двигатели – это первый в мире монорельс с линейным двигателем.

Поезд Московской монорельсовой системы возле станции Телецентр

В конце 1940-х годов исследователи перешли от слова к делу. Британскому инженеру Эрику Лэйзвейту, которого многие называют «отцом маглевов», удалось разработать первый рабочий полноразмерный прототип линейного асинхронного двигателя. Позже, в 1960-х годах, он присоединился к разработке скоростного поезда Tracked Hovercraft. К сожалению, в 1973 году проект закрыли из-за нехватки средств.

Прототип поезда с линейным двигателем RTV 31 (проект Tracked Hovercraft)

В 1979 году появился первый в мире прототип поезда на магнитной подушке, лицензированный для предоставления услуг по перевозке пассажиров – Transrapid 05. Испытательный трек длиной 908 м был построен в Гамбурге и представлен в ходе выставки IVA 79. Интерес к проекту оказался настолько велик, что Transrapid 05 удалось успешно проработать еще три месяца после окончания выставки и перевезти в общей сложности около 50 тыс. пассажиров. Максимальная скорость этого поезда составляла 75 км/ч.

Система Transrapid 05 на выставке IVA 79

А первый коммерческий магнитоплан появился в 1984 году в Бирмингеме, Англия. Железнодорожная линия на магнитном подвесе соединяла терминал международного аэропорта Бирмингема и расположенную рядом железнодорожную станцию. Она успешно проработала с 1984 по 1995 год. Протяженность линии составляла всего 600 м, а высота, на которую состав с линейным асинхронным двигателем поднимался над полотном дороги – 15 миллиметров. В 2003 году на ее месте была построена система пассажирских перевозок AirRail Link на базе технологии Cable Liner.

В 1980-х годах к разработке и реализации проектов по созданию высокоскоростных поездов на магнитной подушке приступили не только в Англии и Германии, но и в Японии, Корее, Китае и США.

Under construction

Old Dominion University

A track of less than a mile in length was constructed at Old Dominion University in Norfolk, Virginia. Although the system was initially built by American Maglev Technology, Inc. (AMT), problems caused the company to turn it over to the University for research. The system is currently not operational, but research is ongoing to resolve stability issues with the system. This system uses a “smart train, dumb track” that involves most of the sensors, magnets, and computation occurring on the train rather than the track. This system will cost less to build per mile than existing systems. Unfortunately, the $14 Million originally planned did not allow for completion.

AMT Test Track – Powder Springs, GA

A second prototype system in Powder Springs, Georgia, USA, was built by American Maglev Technology, Inc. The test track is 610 m (2,000 ft) long with a 168.6 m (553 ft) curve. Vehicles are operated up to 60 km/h (37 mph), below the proposed operational maximum of 97 km/h (60 mph). A June 2013 review of the technology called for an extensive testing program to be carried out to ensure the system complies with various regulatory requirements including the American Society of Civil Engineers (ASCE) People Mover Standard. The review noted that the test track is too short to assess the vehicles’ dynamics at the maximum proposed speeds.

Комментировать
0