fbpx
No Image

Что такое электромагнитное излучение и как оно влияет на человека

СОДЕРЖАНИЕ
0
01 января 2021

Недостатки предшественника «Алабуги»

Как известно, «Алабуга» – это не название конкретного приспособления, а лишь код проекта. При проектировании и оптимизации последнего учитываются недостатки предыдущего изобретения, которое носит название «Ранец-Е».

Несовершенство отечественного оружия проявляется в двух направлениях:

  1. Гашение излучения преградами. Это означает, что крылатые ракеты доказывают эффективность лишь на открытой местности.
  2. Большой промежуток времени между выстрелами. Электромагнитная бомба запускается каждые 20 минут. Такой перерыв лишает систему защиты на большой период. Компенсировать такой недостаток возможно лишь увеличением количества боевых установок, что является экономически невыгодным и неудобным.

Несмотря на существующие недостатки, система работала в комплекте с примитивными средствами обнаружения и управления сил противовоздушной обороны (командными центрами и РЛС). Такое взаимодействие позволяло обнаружить системы противника и вовремя их нейтрализовать.

Литература[править | править код]

  • Физика. Большой энциклопедический словарь/Гл. ред. А. М. Прохоров. — 4-е изд. — М.: Большая Российская энциклопедия, 1999. — С. 874 — 876. ISBN 5-85270-306-0 (БРЭ)
  • Кудряшов Ю.Б., Перов Ю.Ф. Рубин А.Б. Радиационная биофизика: радиочастотные и микроволновые электромагнитные излучения. Учебник для ВУЗов. – М.: ФИЗМАТЛИТ, 2008. – 184 с. – ISBN 978-5-9221-0848-5

В. Н. Дунаев «Электромагнитные излучения и риск популяционному здоровью при использовании средств сотовой связи» //Гигиена и санитария, № 6, 2007, с. 56—57

ПДУ магнитных полей частот 50 Гц. Харьков, 1986, СН-3206-85.2

Методические указания но гигиенической оценке основных параметров полей частотой 50Гц. Харьков, 1986. СН 3207-85

Ю. Г. Григорьев //Гигиена и санитария, № 3, 2003, с. 14—16

В. Н. Дунаев “Электромагнитные излучения и риск популяционному здоровью при использовании средств сотовой связи” //Гигиена и санитария, № 6, 2007, с. 56—57

Химическое оружие.

Химическим оружием
называют отравляющие вещества и средства
их применения. К средствам применения
относятся авиационные бомбы, кассеты,
боевые части ракет, артиллерийские
снаряды, химические мины, выливные
авиационные приборы, генераторы аэрозолей
и т.п.

Основу химического
оружия составляют отравляющие вещества
(ОВ) – токсичные химические соединения,
поражающие людей и животных, заражающие
воздух, местность, водоемы, продовольствие
и различные предметы на местности.
Некоторые ОВ предназначены для поражения
растений.

В химических
боеприпасах и приборах ОВ находятся в
жидком или твердом состоянии. В момент
применения химического оружия ОВ
переходят в боевое состояние – пар,
аэрозоль или капли и поражают людей
через органы дыхания или – при попадании
на тело человека – через кожу.

Характеристикой
заражения воздуха парами и тонкодисперсными
аэрозолями является концентрация С=m/v,
г/м3 – количество «m» ОВ в единице объема
«v» зараженного воздуха.

Количественной
характеристикой степени заражения
различных поверхностей является
плотность заражения: d=m/s, г/м2 – т.е.
количество «m» ОВ, находящееся на единице
площади «s» зараженной поверхности.

ОВ классифицируется
по физиологическому воздействию на
человека, тактическому назначению,
быстроте наступления и длительности
поражающего действия, токсикологическим
свойствам и пр.

По физиологическому
воздействию на организм человека ОВ
делятся на следующие группы:

1) ОВ нервно-паралитического
действия – зарин, зоман,Vx (ВИ-икс). Они
вызывают расстройства функций нервной
системы, мышечные судороги, паралич и
смерть.

2) ОВ кожно-нарывного
действия – иприт. Поражает кожу, глаза,
органы дыхания и пищеварения – при
попадании внутрь.

3) ОВ общеядовитого
действия – синильная кислота и хлорциан.
При отравлении появляется тяжелая
отдышка, чувство страха, судороги,
паралич.

4) ОВ удушающего
действия – фосген. Поражает легкие,
вызывает их отек, удушье.

5) ОВ психо-химического
действия – BZ (Би-зет). Поражает через
органы дыхания. Нарушает координацию
движений, вызывает галлюцинации и
психические расстройства.

6) ОВ раздражающего
действия – хлорацетофенон, адамсит, CS
(Cи-Эс) и CR (Си-Эр). Эти ОВ вызывают
раздражение органов дыхания и зрения.

Нервно-паралитические,
кожно-нарывные, общеядовитые и удушающие
ОВ являются ОВ смертельного действия.
ОВ психо-химического и раздражающего
действия – временно выводят из строя
людей.

По быстроте
наступления поражающего действия
различают быстродействующие ОВ (зарин,
зоман, синильная кислота, Си-Эс, Си-Эр)
и медленнодействующие ( Ви-икс, иприт,
фосген, Би-зет).

По длительности
ОВ делятся на стойкие и нестойкие.
Стойкие сохраняют поражающее действие
несколько часов или суток. Нестойкие –
несколько десятков минут.

Токсодоза
– количество ОВ , необходимое для получения
определенного эффекта поражения: T=c*t
(г*мин)/м3 , где: с – концентрация ОВ в
воздухе, г/м3; t – время пребывания человека
в зараженном воздухе, мин.

При применении
химического боеприпаса образуется
первичное облако ОВ. Под действием
движущихся масс воздуха ОВ распространяется
в некотором пространстве, образуя зону
химического заражения.

Зоной
химического заражения
называют район, подвергшийся
непосредственному воздействию химического
оружия, и территорию, над которой
распространилось облако, зараженное
ОВ с поражающими концентрациями.

В зоне химического
заражения могут возникать очаги
химического поражения.

Очаг
химического поражения
– это территория, в пределах котрой в
результате воздействия химического
оружия произошли массовые поражения
людей, сельскохозяйственных животных
и растений.

Защита от отравляющих
веществ достигается использованием
индивидуальных средств защиты органов
дыхания и кожи, а также коллективные
средства.

К особым группам
химического оружия можно отнести
бинарные химические боеприпасы,
представляющие собой две емкости с
различными газами – не ядовитыми в чистом
виде, но при их смещении во время взрыва
получается ядовитая смесь.

Можно ли защититься?

После первых испытаний ядерного оружия и определения электромагнитного излучения, как одного из его основных поражающих факторов, в СССР и США начали работать над защитой от ЭМИ.

Вся военная электроника оборудовалась специальными экранами и надежно заземлялась. В ее состав включались специальные предохранительные устройства, разрабатывалась архитектура электроники максимально устойчивая к ЭМИ.

Конечно, если попасть в эпицентр применения электромагнитной бомбы большой мощности, то защита будет пробита, но на определенном расстоянии от эпицентра, вероятность поражения будет существенно ниже. Электромагнитные волны распространяются во все стороны (как волны на воде) поэтому их сила убывает пропорционально квадрату расстояния.

Кроме защиты, разрабатывались и средства радиоэлектронного поражения. С помощью ЭМИ планировали сбивать крылатые ракеты, есть информация об успешном применении этого метода.

В настоящее время разрабатывают передвижные комплексы, что могут испускать ЭМИ высокой плотности, нарушая работу вражеской электроники на земле и сбивая летательные аппараты.

Установленные нормы ЭМИ для человека

Каждый орган в нашем теле вибрирует. Благодаря вибрации вокруг нас создается электромагнитное поле, содействующее гармоничной работе всего организма. Когда на наше биополе воздействуют другие магнитные поля, это вызывает в нем изменения. Иногда организм справляется с влиянием, иногда – нет. Это становится причиной ухудшения самочувствия.

Даже большое скопление людей создает электрический заряд в атмосфере. Полностью изолироваться от электромагнитного излучения невозможно. Есть допустимый уровень ЭМИ, который лучше не превышать.

Вот безопасные для здоровья нормы:

  • 30-300 кГц, возникающие при напряженности поля 25 Вольт на метр (В/м),
  • 0,3-3 МГц, при напряженности 15 В/м,
  • 3-30 МГц – напряженность 10 В/м,
  • 30-300 МГц – напряженность 3 В/м,
  • 300 МГц-300 ГГц – напряженность 10 мкВт/см2.

При таких частотах работают гаджеты, радио- и телеаппаратура.

Поражающие факторы ядерного взрыва и действие

Ядерное оружие – это один из самых опасных видов, существующих на Земле. Применение этого средства может решать разные задачи. К тому же объекты, которые должны быть атакованы, могут иметь разное расположение. В связи с этим ядерный взрыв может быть произведен в воздухе, под землей или водой, над землей или водой. Этот вид оружия способен разрушить все объекты, которые не защищены, а также людей. В связи с этим различают следующие поражающие факторы ядерного взрыва.

1. Ударная волна. На этот фактор приходится около 50 процентов всей выделяемой энергии при взрыве. Ударная волна от взрыва ядерного оружия аналогична действию при разрыве обычной бомбы. Ее отличием является более разрушительная сила и продолжительное время действия. Если рассматривать все поражающие факторы ядерного взрыва, то этот считается основным.

Ударная волна этого оружия способна поражать объекты, которые находятся далеко от эпицентра. Она представляет собой процесс сильного сжатия воздуха. Скорость ее распространения зависит от созданного давления. Чем дальше от места взрыва, тем более слабое воздействие волны. Опасность взрывной волны заключается еще и в том, что она перемещает в воздухе предметы, которые могут привести к гибели людей. Поражения этим фактором подразделяются на легкие, тяжелые, крайне тяжелые и средние.

Укрыться от воздействия ударной волны можно в специальном убежище.

2. Световое излучение. На этот фактор приходится около 35 % всей выделяемой энергии при взрыве. Это поток лучистой энергии, который включает инфракрасное, видимое и ультрафиолетовое излучение. В качестве источников светового излучения выступают раскаленный воздух и раскаленные продукты взрыва.

Температура светового излучения может достигать 10000 градусов по Цельсию. Уровень поражающего действия определяется световым импульсом. Это отношение общего количества энергии к той площади, которую она освещает. Энергия светового излучения переходит в тепловую. Происходит нагрев поверхности. Он может быть достаточно сильным и приводить к обугливанию материалов или пожарам.

Люди в результате светового излучения получают многочисленные ожоги.

3. Проникающая радиация. Поражающие факторы ядерного взрыва включают и этот компонент. На его долю приходится около 10 процентов всей энергии. Это поток нейтронов и гамма-квантов, которые исходят из эпицентра применения оружия. Их распространение происходит во все стороны. Чем дальше расстояние от точки взрыва, тем меньше концентрация этих потоков в воздухе. Если оружие было применено под землей или под водой, то степень их воздействия значительно ниже. Это связано с тем, что часть потока нейтронов и гамма квантов поглощается водой и землей.

Проникающая радиация охватывает меньшую зону, чем ударная волна или излучение. Но существуют такие виды оружия, у которых действие проникающей радиации значительно выше других факторов.

Нейтроны и гамма кванты проникают через ткани, блокируя работу клеток. Это приводит к изменениям в работе организма, его органов и систем. Клетки отмирают и разлагаются. У людей это называется лучевой болезнью. Для того чтобы оценить степень воздействия радиации на организм, определяют дозу излучения.

4. Радиоактивное заражение. После взрыва некоторая часть вещества не подвергается делению. В результате его распада образуются альфа-частицы. Многие из них активны не более часа. Наибольшей степени радиоактивного загрязнения подвергается территория в эпицентре взрыва.

5. Электромагнитный импульс. Он также входит в систему, которую образуют поражающие факторы ядерного оружия. Он связан с возникновением сильных электромагнитных полей.

Это все главные поражающие факторы ядерного взрыва. Его действие оказывает существенное воздействие на всю территорию и людей, которые попадают в эту зону.

Ядерное оружие и его поражающие факторы изучаются человечеством. Его использование контролируется мировой общественностью, чтобы не допустить глобальных катастроф.

Электромагнитная бомба

Как вы представляете себе начало Третьей мировой войны? Ослепительные вспышки термоядерных зарядов? Стоны людей, умирающих от сибирской язвы? Удары гиперзвуковых летательных аппаратов из космоса?

Все может быть совсем по-другому.

Вспышка действительно будет, но не очень сильная и не испепеляющая, а похожая, скорее, на раскат грома. Самое «интересное» начнется потом.

Загорятся даже выключенные люминесцентные лампы и экраны телевизоров, в воздухе повиснет запах озона, а проводка и электрические приборы начнут тлеть и искриться. Гаджеты и бытовые приборы, в которых есть аккумуляторы, нагреются и выйдут из строя.

Перестанут работать практически все двигатели внутреннего сгорания. Отключится связь, не будут работать средства массовой информации, города погрузятся во тьму.

Общество, против которого будет применено орудие подобного действия, окажется отброшенным на несколько веков назад.

А что в России?

У нас в стране уже вторую осень подряд появляются новости об успехах в создании электромагнитного вооружения. Правда, никаких подробностей, подобных тем, которыми балуют публику их американские коллеги, отечественные представители ВПК не разглашают, ограничиваясь дежурным упоминанием своей неповторимости.

В прошлом году, повторив неизбежную для отечественного ОПК мантру про «отсутствие иностранных аналогов», представитель «Объединенной приборостроительной корпорации» (ОПК) рассказал агентству РИА Новости об испытании некоего оружия, способного «с помощью направленной энергии воздействовать на высокоточные боеголовки и бортовую аппаратуру самолетов, а также беспилотных аппаратов», причем на расстоянии в десятки километров.

Год спустя коллеги ОПК из КРЭТ устами Владимира Михеева сделали не менее яркое заявление о том, что «российские военные перешли к новой стадии создания электромагнитного оружия». Причем речь уже идет о самой широкой номенклатуре вооружений. Упоминаются снаряды, бомбы и ракеты, которые «несут на себе специальный взрывомагнитный генератор».

По словам Михеева, российские ученые завершили проект под шифром «Алабуга» в 2011—2012 годах. Работы эти носили теоретический характер и должны были оценить практическую ценность электромагнитного вооружения.

В 2014 году в СМИ появлялись сообщения об испытаниях некоей ракеты «Алабуга», которая, подрываясь в воздухе, якобы может отключать электронное оборудования в радиусе 3,5 км. Никаких подтверждений этой информации в официальных источниках найти не удалось, равно как и нет никаких свидетельств успешности проведенных испытаний, а также представления о характере источника энергии для такого мощного воздействия.

Генератор Сахарова – Фоулера

При воздействии ЭМИ на объект на его поверхности возникает напряженность электрического поля, которая может достигать нескольких киловольт на метр. Под его воздействием в электронных компонентах возникают неустранимые поражения – в транзисторах пробиваются p-n-p переходы, перегорают печатные проводники на платах, происходит замыкание в трансформаторных витках. При этом не имеет значения, работает в этот момент электронная аппаратура или же она выключена.

При менее слабых воздействиях в работе электроники возникают сбои, но после окончания «нелетального» воздействия ЭМИ работа электронных схем восстанавливается. Правда, и такие кратковременные нарушения в работе могут быть критичными для штатной отработки боеприпаса или комплекса.

Мощность ЭМИ может достигать такого уровня, при котором возможен подрыв взрывчатого вещества снарядов и мин. И происходят процессы в плутонии боевых блоков баллистических ракет, которые делают невозможным развитие цепной реакции.

Первые эксперименты по созданию ЭМИ-генераторов начались, когда транзисторов еще по сути не было – в начале 50-х годов. Электроника строилась на радиолампах, которых ЭМИ не боятся. Причем этой проблемой занялись одновременно по обе стороны Атлантического океана. В Советском Союзе схему работоспособного генератора предложил академик Андрей Дмитриевич Сахаров в процессе создания термоядерной бомбы.

В США абсолютно ту же самую идею в Лос-Аламосской национальной лаборатории реализовывал физик Кларенс Максвелл Фоулер.

В результате и в Советском Союзе, и в США к началу 60-х годов были созданы работоспособные лабораторные установки взрывомагнитного генератора (ВМГ) ЭМИ.

Принцип действия ВМГ можно описать одной фразой: получение импульса высокой мощности при помощи сложения энергии взрыва и электрического заряда, сжатой во времени и пространстве. Техническая же реализация крайне сложна, она требует точных расчетов и прецизионных технологий.

Упрощенно ВМГ можно представить как две соосно расположенные трубы разного диаметра. Во внутренней расположен цилиндр детонирующего с высокой скоростью ВВ. В трубе большего диаметра находится спираль соленоида. Также есть заряженная конденсаторная батарея. При подаче напряжения с батареи на соленоид возникает магнитное поле. Одновременно с этой коммутацией при помощи капсюля, расположенного с торца, происходит подрыв ВВ. При этом детонация распространяется по оси ВМГ. Сразу же в месте подрыва образуется расширение внутренней трубы, которое, касаясь обмотки соленоида, замыкает часть витков. Внутренняя труба деформируется в виде конуса, который по мере осевого распространения детонации соприкасается с витками соленоида по винтовой линии.

В процессе непрерывной расширяющейся деформации внутренней трубы происходят стремительное увеличение силы тока и сжатие магнитного поля в уменьшающемся зазоре между внешней и внутренней трубами. Уже во время экспериментов в Арзамасе-16, проходивших в первой половине 50-х годов, удалось получить пиковые значения тока в сотни мегаампер, а мощность электромагнитного поля в импульсе длительностью несколько микросекунд – до десятков мегаджоулей.

Эта энергия складывается из энергии взрывчатого вещества и той, которая накоплена в конденсаторной батарее. Но, к сожалению, данные по величине электрического заряда в открытых источниках отсутствуют.

Общая защита от электромагнитного излучения

Предлагаемые защитные действия:

• Отключайте электронные устройства, когда они не используется.
• Отключайте электроприборы, когда они не используются.
• Не оставляйте компоненты, такие как принтеры и сканеры, в режиме ожидания.
• Используйте короткие кабели для работы.
• Установите защитную индукцию вокруг компонентов.
• Используйте компоненты с автономными батареями.
• Используйте рамочные антенны.
• Подключите все провода заземления к одной общей точке заземления.
• По возможности используйте небольшие устройства, которые менее чувствительны к ЭМИ.
• Установите MOV (металл-оксид-варистор) переходные протекторы на портативные генераторы.
• Используйте ИБП для защиты электроники от всплеска EMP.
• Используйте блокирования устройства.
• Используйте гибридную защиту (например, полосовой фильтр с последующим молниеотводом).
• Держите чувствительные приборы и устройства подальше от длинных трасс кабеля или электропроводки, антенн, растяжек, металлических башен, гофрированного металла, стальных ограждений, железнодорожных путей.
• Устанавливайте кабель под землей, в экранированных кабельных каналах.
• Постройте одну или несколько клеток Фарадея.

Следует заранее продумать защитную систему. Например, резервный генератор, вероятно, не будет поврежден солнечной бурей, но ЭМИ может повредить чувствительные электронные контроллеры, так что экранирование является целесообразным. И наоборот, такой прибор, как источник бесперебойного питания (ИБП) может быть полезным сам по себе в качестве компонента защиты. Если EMP происходит, резкий рост может уничтожить ИБП, но это, скорее всего, защитит от разрушения подключенные устройства и компоненты.

Как построить клетку Фарадея

Клетку Фарадея можно смастерить в домашних условиях из металлических емкостей и контейнеров, таких как мусорный бак или ведро, шкаф, сейф, старая микроволновка. Подойдет любой объемный предмет, который имеет непрерывную поверхность без зазоров или больших отверстий. Необходимо наличие плотно облегающей крышки.

Установите непроводящий материал (картон, дерево, бумага, листы пены или пластика) на всех внутренних сторонах клетки Фарадея, чтобы сохранить содержимое от прикосновения металла. Кроме того, можно обернуть каждый элемент в пузырчатую пленку или пластик. Все приборы, которые находятся внутри, должны быть изолированы от всего остального и особенно от металлического контейнера.

Клетка Фарадея из мусорного бака

Клетка Фарадея из металлического ящика

Что поместить в клетку Фарадея

Поместите внутрь клетки весь электронный и электротехнический арсенал, который входит в НЗ, и те компоненты, которые закуплены «впрок». Так же там необходимо расположить все, что может быть чувствительно к ЭМИ, в случае получения предупредительного сигнала. В том числе:

• Батарейки для радио.
• Портативные рации.
• Портативные телевизоры.
• Светодиодные фонарики.
• Солнечное зарядное устройство.
• Компьютер (ноутбук или планшет).
• Сотовые телефоны и смартфоны.
• Различные лампочки.
• Зарядные шнуры для мобильных телефонов, планшетов и т.п.

Как защитить важную информацию от ЭМИ

Имейте в виду, что электромагнитный импульс может нарушить инфраструктуру на длительное время, а в случае Апокалипсиса – навсегда. Поэтому стоит заранее подготовиться, и произвести резервное копирование важных файлов с помещением их на разных носителях в разные клетки Фарадея.

Вместо послесловия

Если предупреждение об ЭМИ небыло получено, но вы видите яркую вспышку с последующим отключением энергосистем, действуйте по своему усмотрению. Ведь нельзя знать заранее, насколько тяжелым и опасным будет электромагнитный импульс, дальность которого при некоторых видах взрывов достигает 1000 км. Но благодаря подготовке и предварительному планированию можно определить, насколько реально мы сможем выжить в мире после ЭМИ.

Будьте готовы, и будете в безопасности!

www.extreme-voyage.ru

Альтернативные источники энергии

Изготавливаем супероружие

Самое сложное — сформировать сходящуюся ударную волну (сферическую, ее скорость с уменьшением радиуса возрастает намного быстрее, чем цилиндрической). Та же задача стояла и при создании ядерных зарядов (подробнее см. «ПМ» №13) — там взрыв обжимал до сверхкритической плотности плутониевый шарик. Собирали такой заряд из 32 сферических сегментов (20 шестигранных и 12 пятигранных), образовывавших структуру, похожую на футбольный мяч. Изготовление таких сегментов с необходимой точностью — задача потруднее огранки бриллианта. Еще труднее было заставить сработать 32 детонатора одновременно, с разбросом по времени менее миллионной доли секунды (!). Для этого в первых атомных бомбах применялось сложное электронное устройство весом более 200 кг.

Технологический отрыв от тех времен огромен. В нашем случае заряд ВВ размещается внутри детонационного распределителя — полой сферы из поликарбоната, на поверхности которой отфрезерованы многочисленные каналы. Начинаясь у детонатора, причудливо разветвляясь, каналы покрывают всю внешнюю поверхность распределителя, заканчиваясь сквозными отверстиями. Они заполнены эластичным ВВ с высокостабильной скоростью детонации. Эта сложнейшая сеть создается так, чтобы обеспечить равные пути детонации от первичного детонатора до каждого отверстия — точки инициирования основного заряда (их несколько десятков). Расчет каналов требует методов геометрии Римана, да и отфрезеровать такую систему каналов можно не на каждом высокоточном станке с ЧПУ. Основной заряд изготавливается из мощного взрывчатого состава на основе октогена. Внутри него устанавливается сфера из монокристалла иодида цезия.

Вокруг сферы собирается магнитная система. В ее основе — два постоянных магнита, от которых к монокристаллу идут два усеченных конуса из магнитно-мягкой стали, «собирающих» поле магнитов в область, занятую монокристаллом. Сохранению потока, создаваемого магнитами, служат и магнитопроводы. Кристалл устанавливается в центре так, чтобы его главная ось совпадала с направлением магнитного поля, иначе различия в свойствах вдоль других осей могут нарушить симметрию сжатия.

Устройство собрано. Сработал детонатор. Со скоростью около 8 км/с огоньки детонации, разветвляясь, разбегутся по каналам, одновременно нырнут в десятки отверстий и инициируют в основном заряде сферическую детонацию с давлением в полмиллиона атмосфер. Достигнув поверхности иодида цезия, волна детонации сформирует в нем ударную волну. Поскольку плотность монокристалла больше плотности газов взрыва, давление на поверхности сферы скачкообразно увеличится, превысив миллион атмосфер. Сферическая ударная волна помчится к центру со скоростью более 10 км/с, оставляя за собой уже не монокристалл, а проводящую, как металл, жидкую мешанину из атомов и ионов йода и цезия и сжимая магнитное поле. В конечной фазе отношение размера области сжатия к начальному радиусу монокристалла — менее одной тысячной. Энергия магнитного поля могла бы возрасти при этом в миллион миллионов раз! Впрочем, вспомним, что сжата-то лишь мизерная часть поля, а почти все «выброшено» за фронт ударной волны.

Если заряд собран правильно, то ударная волна, сойдясь в точку и отразившись, устремится обратно, скачком изменив поле, что и приведет к генерации импульсного потока радиочастотного электромагнитного излучения (РЧЭМИ). Длительность его менее наносекунды, но спектр! За доли наносекунды поле меняется, конечно же, не по закону синуса с периодом, равным времени сжатия-разрежения, а куда как более резко, и это значит, что в функции, описывающей его изменение, существенны вклады многих частот. Поэтому ударно-волновой источник излучает в диапазоне от сотен мегагерц до сотен гигагерц — более трех частотных

декад!

Ну, а в каком же направлении излучает такой боеприпас? Диаграмма направленности излучения сильно зависит от отношения размера излучателя к длине волны. А излучается прорва частот на трех декадах, да еще размер излучателя (области сжатия) непрерывно меняется! Так что можно считать, что электромагнитная энергия излучается по всем направлениям, что делает вполне естественным применение такого источника в боеприпасах.

Пушки и снаряды

Пожалуй, первыми электромагнитными боеприпасами были и остаются обычные ядерные заряды, одним из поражающих факторов которых является электромагнитный импульс, выводящий из строя электронику на много километров вокруг. Действие электромагнитного излучения оказалось настолько эффективным, что сразу возник вопрос — нельзя ли создать «чистое», неядерное электромагнитное оружие?

Первой приходит мысль о направленном излучении, которое распространяется примерно в 40 тысяч раз быстрее, чем летит боеголовка баллистической ракеты. Такой пушке не потребуются снаряды, у нее не будет отдачи, стрельба ее беззвучна и бездымна.

Несложные расчеты показывают: дальность поражения электроники не может превышать размер источника излучения более чем в 1000 раз, иначе излучение вызовет разряд в окружающем воздухе и вся его энергия уйдет на образование плазменного экрана. Из этого следует, что источники узких пучков электромагнитного излучения — микроволновые пушки — всегда будут проигрывать равным по габаритам артсистемам в дальности и эффективности поражения. Пучок излучения не заставишь искривиться, поэтому нельзя стрелять с закрытых позиций.

Оружие В России создали оружие против стай дронов

Если к этому добавить немалые габариты микроволновых пушек, то понятно, что шансов на современном поле боя у них нет. Список недостатков можно продолжить. Но это не значит, что у электромагнитного оружия нет будущего.

Другое дело, если источник ЭМИ срабатывает рядом с целью — тогда преимущество перед ударной волной или осколками очевидно. Например, радиус поражения крылатой ракеты 120-мм электромагнитным боеприпасом может составить 60 метров (та же тысяча радиусов боеприпаса), что в десять раз дальше, чем осколочно-фугасным снарядом аналогичного калибра.

Однако на данный момент в мире не существует компактных хранилищ электромагнитной энергии высокой плотности, которые можно было бы разместить внутри современных боеприпасов. Поэтому для ее генерации используется традиционное взрывчатое вещество, при детонации которого выделяется в тысячи раз больше энергии, чем может выдать в нагрузку лучший аккумулятор того же объема. Называются такие генераторы взрывомагнитными, и своим рождением они обязаны опять же ядерному оружию.

Общее определение

На занятиях по предмету основ безопасности жизнедеятельности (ОБЖ) одним из направлений обучения является рассмотрение особенностей ядерного, химического, бактериологического оружия и его характеристик. Также изучаются закономерности возникновения подобных опасностей, их проявление и способы защиты. Это в теории позволяет снизить количество человеческих жертв при поражении оружием массового уничтожения.

Ядерным называется оружие взрывного типа, действие которого основано на энергии цепного деления тяжелых ядер изотопов. Также поражающая сила может появляться при термоядерном синтезе. Эти два типа оружия отличаются силой действия. Реакции деления при одной массе будет в 5 раз слабее, чем при термоядерных реакциях.

Первая ядерная бомба было разработана в США в 1945 году. Первый удар при помощи этого оружия был произведен 5.08.1945 года. Бомба была сброшена на город Хиросиму в Японии.

В СССР первую ядерную бомбу разработали в 1949 году. Ее взорвали в Казахстане, вне населенных пунктов. В 1953 году СССР вела испытания водородной бомбы. Это оружие в 20 раз превосходило по своей силе то, которое было сброшено на Хиросиму. При этом размер этих бомб был одинаковым.

Характеристика ядерного оружия на ОБЖ рассматривается с целью определения последствий и способов выжить при ядерной атаке. Правильное поведение населения при таком поражении может спасти больше человеческих жизней. Условия, которые складываются после взрыва, зависят от того, в каком месте он произошел, какую мощность имел.

Ядерное оружие превышает по мощности, разрушающим действиям обычные авиационные бомбы в несколько раз. Если оно применяется против войск противника, поражение носит обширный характер. При этом наблюдаются огромные человеческие потери, разрушается техника, сооружения и прочие объекты.

Влияние на человека

В ходе многочисленных исследований радиобиологи пришли к неутешительному выводу – длительное излучение электромагнитных волн может стать причиной «взрыва» болезней, то есть оно вызывает бурное развитие паталогических процессов в организме человека. Причем многие из них вносят нарушения на генетическом уровне.

Видео: Как влияет электромагнитное излучение на людей.