Общая информация
Новости
23 Декабря 2020Работники Кольской АЭС – победители конкурса «Энергия молодых – 2020»
В концерне «Росэнергоатом» подвели итоги профессионального и творческого конкурса «Энергия молодых», организованного с целью развития кадрового потенциала молодежи российских атомных станций.
15 Декабря 2020Работники Кольской АЭС стали героями фотопроекта, посвященного Дню энергетика и 100-летию плана ГОЭЛРО
В Мурманске стартовал фотопроект «проСТО», посвященный Дню энергетика и вековому юбилею плана электрификации России – ГОЭЛРО.
Новости
1 – 2 из 523
Начало | Пред. |
1
|
След. |
Конец
КОЛЬСКАЯ АЭС
Место расположения: вблизи г. Полярные Зори (Мурманская обл.)
Тип реактора: ВВЭР-440
Количество энергоблоков: 4
Кольская АЭС – уникальное энергетическое предприятие, первая атомная станция, построенная в суровых климатических условиях Заполярья и самая северная АЭС в Европе.
Пуск первого энергоблока Кольской АЭС состоялся 29 июня 1973 года. Эта дата считается днем рождения предприятия, которое сегодня является филиалом концерна «Росэнергоатом» – электроэнергетического дивизиона Госкорпорации «Росатом».
Кольская атомная станция надежно обеспечивает электрической энергией более половины потребителей в Мурманской области и Карелии. Предприятие входит в число крупнейших налогоплательщиков Мурманской области. По итогам 2019 года в консолидированный бюджет региона перечислено почти 2,5 млрд. рублей.
Производство электроэнергии на Кольской АЭС обеспечивают четыре энергоблока с реакторами типа ВВЭР мощностью 440 МВт каждый.
В 2019 году на станции успешно завершилась масштабная модернизация энергоблоков первой очереди, позволившая на порядок повысить уровень их безопасности и продлить срок эксплуатации до 2033 и 2034 гг. Кольская АЭС стала единственной в России атомной станцией, где реализована программа повторного продления сроков эксплуатации двух энергоблоков.
Продление эксплуатационного ресурса энергоблоков Кольской АЭС гарантирует надежное энергоснабжение Арктического региона и стимулирует создание на территории Кольского Заполярья новых инновационных производств.
Кольская в 2019 году признана лучшей атомной станцией России в области культуры безопасности.
Расстояние до города-спутника (г. Полярные Зори) – 11 км; до областного центра (г. Мурманск) – 170 км.
НОМЕР ЭНЕРГОБЛОКА | ТИП РЕАКТОРА | УСТАНОВЛЕННАЯ МОЩНОСТЬ, М ВТ | ДАТА ПУСКА |
---|---|---|---|
1 | ВВЭР-440 | 440 | 29.06.1973 |
2 | ВВЭР-440 | 440 | 08.12.1974 |
3 | ВВЭР-440 | 440 | 24.03.1981 |
4 | ВВЭР-440 | 440 | 11.10.1984 |
Суммарная установленная мощность 1760 МВТ |
Принцип работы АЭС
Принцип работы атомной электростанции основан на действии ядерного (иногда называемого атомным) реактора – специальной объёмной конструкции, в которой происходит реакция расщепления атомов с выделением энергии.
Существуют различные виды ядерных реакторов:
- PHWR (также имеет название «pressurised heavy water reactor» — «тяжеловодный ядерный реактор»), используемый преимущественно на территории Канады и в городах Индии. В его основе используется вода, формула которой — D2O. Она выполняет функцию как теплоносителя, так и замедлителя нейтронов. Коэффициент полезного действия близится к 29%;
- ВВЭР (водо-водяной энергетический реактор). В настоящее время ВВЭР эксплуатируют только в СНГ, в частности, модель ВВЭР-100. Реактор имеет КПД равный 33%;
- GCR, AGR (графитоводный). Жидкость, содержащаяся в таком реакторе, выступает в роли теплоносителя. В данной конструкции замедлитель нейтронов — графит, отсюда и название. КПД составляет около 40%.
По принципу устройства реакторы также делят на:
- PWR (pressurised water reactor) – устроен так, что вода, находящаяся под определенным давлением, замедляет реакции и подает тепло;
- BWR (сконструирован таким образом, что пар и вода находятся в главной части устройства, не имея водяного контура);
- РБМК (канальный реактор, имеющий особенно большую мощность);
- БН (система работает за счет быстрого обмена нейтронами).
Устройство и структура атомной электростанции. Как работает АЭС?
Устройство АЭС
Типичная атомная электростанция состоит из блоков, внутри каждого из которых размещены различные технические приспособления. Самый значимый из таких блоков – комплекс с реакторным залом, обеспечивающий работоспособность всей АЭС. Он состоит из следующих устройств:
- реактора;
- бассейна (именно в нем хранят ядерное топливо);
- машины, перегружающие топливо;
- БЩУ (щит управления в блоках, с помощью него за процессом деления ядра могут наблюдать операторы).
Помимо прочего, имеется блок с бассейнами для отработанного топлива и специальные блоки, предназначенные для охлаждения (они называются градирнями). Кроме того, для охлаждения применяются распылительные бассейны и природные водоемы.
Принцип работы АЭС
На всех без исключения АЭС существует 3 этапа преобразования электрической энергии:
- ядерная с переходом в тепловую;
- тепловая, переходящая в механическую;
- механическая, преобразовывающаяся в электрическую.
Уран отдает нейтроны, вследствие чего происходит выделение тепла в огромных количествах. Горячая вода из реактора прокачивается насосами через парогенератор, где отдает часть тепла, и снова возвращается в реактор. Поскольку эта вода находится под большим давлением, она остается в жидком состоянии(в современных реакторах типа ВВЭР около 160 атмосфер при температуре ~330 °C). В парогенераторе это тепло передается воде второго контура, которая находится под гораздо меньшим давлением (половина давления первого контура и менее), поэтому закипает. Образовавшийся пар поступает на паровую турбину, вращающую электрогенератор, а затем в конденсатор, где пар охлаждают, он конденсируется и снова поступает в парогенератор. Конденсатор охлаждают водой из внешнего открытого источника воды (например, пруда-охладителя).
И первый и второй контур замкнуты, что снижает вероятность утечки радиации. Размеры конструкций первого контура минимизированы, что также снижает радиационные риски. Паровая турбина и конденсатор не взаимодействуют с водой первого контура, что облегчает ремонт и уменьшает количество радиоактивных отходов при демонтаже станции.
Преимущества и недостатки атомных станций:
К плюсам и преимуществам АЭС следует отнести:
– отсутствие выбросов парниковых газов в атмосферу. Вредные выбросы присутствуют лишь в тех случаях, когда подключаются резервные дизельные генераторы, что происходит редко,
– существенное сокращение эмиссии углекислого газа. Согласно расчетам специалистов, в Европе атомные станции позволяют сократить выбросы углекислого газа примерно на 700 млн тонн в год,
– более низкий уровень радиоактивного излучения в сравнении с угольными электростанциями,
– отсутствие зависимости от источников топлива ввиду того, что для работы АЭС оно требуется в небольших объемах,
– высокую мощность (от 1000 до 1600 мегаватт на энергоблок) и круглосуточную работу,
– низкую стоимость производства энергии (что особенно относится к тепловой).
Недостатки атомных электростанций:
– опасность облученного топлива, переработка которого является сложной и дорогостоящей,
– весьма тяжкие последствия для окружающей среды в случае возникновения чрезвычайных ситуаций,
– необходимость высоких капиталовложений.
Несмотря на свои минусы, атомная энергетика на сегодняшний день рассматривается в качестве наиболее перспективного способа получения энергии.
Примечание: Фото //www.pexels.com, //pixabay.com
карта сайта
Коэффициент востребованности
4 111
Преимущества и недостатки атомных электростанций
Спрос на электроэнергию, постоянно растет во всем мире. Особенно это касается развитых стран, где потребление значительно опережает выработку электричества. Принимаются меры по использованию альтернативных источников, но заметных практических результатов они пока не дали. Решить эту проблему возможно разными способами, в том числе путем дальнейшего развития и совершенствования атомной энергетики. При этом, нужно обязательно учитывать все плюсы и минусы атомных электростанций.
Строительство новых АЭС имеет несомненные достоинства, среди которых можно отметить следующие:
- Используемые топливные ресурсы обладают высокой энергоемкостью. Полноценное использование одного килограмма урана дает такое же количество энергии, которое получается при сжигании 50 т нефти или 100 т каменного угля. Отсюда и высокий КПД атомной электростанции.
- Возможность переработки ресурсов и их вторичное применение. В отличие от традиционных видов топлива, уран после расщепления вполне может быть использован вновь. В перспективе возможен полный переход к замкнутому циклу, при котором не будут образовываться вредные и опасные отходы.
- Когда эксплуатируется электростанция (АЭС), у нее отсутствует парниковый эффект. Эти установки ежедневно предотвращают выбросы в атмосферу миллионов тонн углекислого газа.
- Независимость реакторов от мест, где располагается топливо. Из-за высокого энергетического эквивалента ядерных ресурсов, процесс их транспортировки не требует существенных затрат.
- Стоимость эксплуатации сравнительно невысокая и не превышает расходы на содержание других типов электростанций.
Однако, учитывая специфику атомных установок, следует отметить и недостатки, связанные с их использованием:
- В первую очередь, это тяжелые последствия, возникающие даже при незначительной аварии. В связи с этим, любая АЭС опасна и требует достаточно сложных систем безопасности с широкими возможностями резервирования. Это позволяет обезопасить основной механизм даже при значительных авариях.
- Необходимость уничтожать отработанное топливо. Его утилизация требует серьезных затрат, достигающих 20% от общих эксплуатационных расходов.
- Для атомных электростанций по техническим причинам нежелательна работа в маневренном режиме.
Тем не менее, несмотря на недостатки, данное направление считается перспективным, поэтому ведутся постоянные исследования по дальнейшему совершенствованию и развитию атомной энергетики.
Все атомные электростанции России
Плавучая атомная электростанция
Аварии на атомных электростанциях
Газотурбинная электростанция (ГТЭС)
Тепловые электростанции (ТЭС)
Волновая электростанция (ВЭС)
История «мирного атома» в СССР и России
XX век навсегда останется в истории точкой отсчёта покорения «атома». Незадолго до его начала английские физики Джозеф Томсон и Эрнест Резерфорд использовали радиоактивные частицы при изучении процесса ионизации. Первая ядерная реакция была осуществлена Резерфордом во время бомбардировки атомов азота α-частицами в 1919 году.
Тремя годами позже в Петрограде под руководством академика Вернадского начал работу Радиевый институт. Учреждение объединило в себе все организации города, работающие в области радиологии. В плане практической деятельности институт осуществлял научное руководство радиевым рудником и заводом посёлка Бондюга в Татарстане.
На базе учебного заведения в 1933 году проводится Всесоюзная научная конференция, посвящённая проблемам ядерной физики. 1939 год ознаменовался открытием возможности урановой ядерной реакции, в разработке которой приняли участие выдающиеся советские учёные того времени. Через год Президиумом Академии Наук СССР утверждается программа научных исследований.
Вторая мировая война, осуществление управляемой ядерной реакции Э. Ферми в Чикаго, бомбардировка атомными бомбами японских городов Хиросима и Нагасаки и последующие события внесли жёсткие коррективы в работу учёных-ядерщиков. Во главе работ по урану ставят профессора И. В. Курчатова. Создаётся профильная лаборатория, затем институт, который существует и поныне. Чрезвычайная упорная работа приносит результаты:
- 1944 год – первые килограммы чистого урана на территории Европы и Азии;
- 1946 год – запущен первый в Евразии реактор;
- 29 августа 1949 года на полигоне под Семипалатинском испытана первая в СССР атомная бомба;
- 1953 год – водородная бомба;
- 26 июня 1954 года первая в мире атомная электростанция (реактор «Атом мирный») в городе Обнинске, СССР, дала электрический ток.
Помимо чисто военных целей (бомбы, ракеты, подводные лодки), ядерная энергия начинает использоваться в народном хозяйстве и научных исследованиях. Кроме электростанции, в 60-ых годах прошлого века был запущен в работу исследовательский реактор на быстрых нейтронах, появился первый атомный ледокол – «Ленин».
Строительство атомных электростанций в нашей стране принимает широкие масштабы. 1958 год. Запущена первая очередь Сибирской АЭС (атомная электрическая станция), начато сооружение промышленной Белоярской атомной электростанции. В сентябре 1964 года вступает в строй первый энергоагрегат Нововоронежской АЭС. 1973 год – Ленинградская атомная станция.
Так продолжается вплоть до 1986 года, когда катастрофа планетарного масштаба на Чернобыльской электростанции вынудила пересмотреть доктрину ядерной энергетической безопасности. На территории СССР появилось 11 недостроенных атомных объектов.
После распада Советского Союза в атомной отрасли произошёл целый ряд структурных изменений. Одно ведомство сменяло другое. В 1992 году путём преобразований было создано профильное министерство. Огромные экономические трудности привели к стагнации ядерной индустрии страны. Лишь благодаря высокой потребности в энергоресурсах и активной позиции специалистов атомные мощности и ресурсный человеческий потенциал в значительной степени удалось сохранить. В конце 1991 года в работе оставались 28 энергоблоков производительностью 20 242 МВт.
Для справки: общая мощность электростанций страны составляла на начало 1992 года 211 755 МВт. С 2000 года открывается новый этап атомной энергетики России.
Виды топлива используемого на Атомных электростанциях
На атомных электростанциях возможно использование несколько веществ, благодаря которым можно выработать атомную электроэнергию, современное топливо АЭС – это уран, торий и плутоний.
Ториевое топливо сегодня не применяется в атомных электростанциях, для этого есть ряд причин.
Во-первых, его сложнее преобразовать в тепловыделяющие элементы, сокращенно ТВЭлы.
ТВЭлы — это металлические трубки, которые помещаются внутрь ядерного реактора. Внутри
ТВЭлов находятся радиоактивные вещества. Эти трубки являются хранилищами ядерного топлива.
Во-вторых, использование ториевого топлива предполагает его сложную и дорогую переработку уже после использования на АЭС.
Плутониевое топливо так же не применяют в атомной электроэнергетике, в виду того, что это вещество имеет очень сложный химический состав, система полноценного и безопасного применения еще не разработана.
Урановое топливо
Основное вещество, вырабатывающее энергию на ядерных станциях – это уран. На сегодняшний день уран добывается несколькими способами:
- открытым способом в карьерах
- закрытым в шахтах
- подземным выщелачиванием, при помощи бурения шахт.
Подземное выщелачивание, при помощи бурения шахт происходит путем размещения раствора серной кислоты в подземных скважинах, раствор насыщается ураном и выкачивается обратно.
Самые крупные запасы урана в мире находятся в Австралии, Казахстане, России и Канаде.
Самые богатые месторождения в Канаде, Заире, Франции и Чехии. В этих странах из тонны руды получают до 22 килограмм уранового сырья.
В России из одной тонны руды получают чуть больше полутора килограмм урана. Места добычи урана нерадиоактивны.
В чистом виде это вещество мало опасно для человека, гораздо большую опасность представляет радиоактивный бесцветный газ радон, который образуется при естественном распаде урана.
Подготовка урана
В виде руды уран в АЭС не используют, руда не вступает в реакцию. Для использования урана на АЭС сырье перерабатывается в порошок – закись окись урана, а уже после оно становится урановым топливом.
Урановый порошок превращается в металлические «таблетки», — он прессуется в небольшие аккуратные колбочки, которые обжигаются в течение суток при температурах больше 1500 градусов по Цельсию.
Именно эти урановые таблетки и поступают в ядерные реакторы, где начинают взаимодействовать друг с другом и, в конечном счете, дают людям электроэнергию.
В одном ядерном реакторе одновременно работают около 10 миллионов урановых таблеток.
Перед размещением урановых таблеток в реакторе они помещаются в металлические трубки из циркониевых сплавов — ТВЭлы, трубки соединяются между собой в пучки и образуют ТВС – тепловыделяющие сборки.
Именно ТВС называются топливом АЭС.
СССР и атомная бомба
С 1942го года в мире началась большая гонка – кто первым изобретет атомную бомбу. Конкурировали Германия, США и Советский Союз. Первыми к финишу пришли в США.
В августе 1945го весь мир увидел атомное оружие в действии. Жертвами показательного выступления стали японские города Хиросима и Нагасаки.
Через 14 дней после бомбардировки Хиросимы и Нагасаки лично Сталиным был подписан указ о создании Специального комитета для руководства всеми работами по использованию атомной энергии. Начальником комитета назначили Лаврентия Берию. Спец. комитет имел неограниченные возможности по привлечению любых ученых из любых отраслей науки для создания ядерного оружия.
Многие ученые, задействованные в атомном проекте СССР, были отозваны из эвакуаций, некоторые демобилизованы из Красной армии, часть исследователей была привезена из послевоенной Германии.
Советская разведка доносила, что в планах США – нанести «пробные» ядерные удары и на территорию Советского Союза. Было ли это правдой, точно никто не скажет, но команде Игоря Курчатова, занимающегося исследованиями атомных реакций, очень настоятельно рекомендовали поторопиться и наконец-то дать в руки СССР атомную бомбу.
В 1946 году в СССР под руководством И. Курчатова был запущен первый в Евразии ядерный реактор, назвали его Ф-1. В нем советские ученые смогли наблюдать первую цепную реакцию распада. Интересно, что Ф-1 состоял из больших графитовых блоков, которые в реакторе играли роль замедлителя. Для строительства реактора потребовалось 430 тонн чистого графита.
Налаживать производство графитовых блоков предстояло одному из Подмосковных заводов, который раньше занимался изготовлением совсем других деталей из совсем другого материала. Как тогда часто было, «Партия сказала – надо, комсомол ответил – есть!» — завод отпирался недолго и быстро переключился на производство блоков для ядерного реактора.
29 августа 1949 года погоня СССР за ядерным оружием успешно закончилась. Взрывали бомбу на Семипалатинском полигоне в Казахстане. Если США скидывали ядерное оружие на вражескую Японию, то в СССР пострадали мирные, и слабо относящиеся к атомной промышленности, казахи. Взрыв был гораздо слабее, чем в Хиросиме и Нагасаки, но пару десятков лет последствия ядерной волны давали о себе знать.
Руководители страны советов вздохнули свободно. Наличие ядерного оружия обеспечивало безопасность и целостность страны. Можно было заняться другими важными делами вроде атомной электроэнергетики.
Атомные электростанции России
Балаковская АЭС
Расположена рядом с городом Балаково, Саратовской области, на левом берегу Саратовского водохранилища. Состоит из четырёх блоков ВВЭР-1000, введённых в эксплуатацию в 1985, 1987, 1988 и 1993 годах.
Балаковская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.
Ежегодно она вырабатывает более 30 миллиардов кВт•ч электроэнергии. В случае ввода в строй второй очереди, строительство которой было законсервировано в 1990-х, станция могла бы сравняться с самой мощной в Европе Запорожской АЭС.
Белоярская АЭС
Белоярская АЭС расположена в городе Заречный, в Свердловской области, вторая промышленная атомная станция в стране (после Сибирской).
На станции были сооружены четыре энергоблока: два с реакторами на тепловых нейтронах и два с реактором на быстрых нейтронах.
В настоящее время действующими энергоблоками являются 3-й и 4-й энергоблоки с реакторами БН-600 и БН-800 электрической мощностью 600 МВт и 880 МВт соответственно.
БН-600 сдан в эксплуатацию в апреле 1980 — первый в мире энергоблок промышленного масштаба с реактором на быстрых нейтронах.
БН-800 сдан в промышленную эксплуатацию в ноябре 2016 г. Он также является крупнейшим в мире энергоблоком с реактором на быстрых нейтронах.
Билибинская АЭС
Расположена рядом с городом Билибино Чукотского автономного округа. Состоит из четырёх блоков ЭГП-6 мощностью по 12 МВт, введённых в эксплуатацию в 1974 (два блока), 1975 и 1976 годах.
Вырабатывает электрическую и тепловую энергию.
Калининская АЭС
Калининская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.
Расположена на севере Тверской области, на южном берегу озера Удомля и около одноимённого города.
Состоит из четырёх энергоблоков, с реакторами типа ВВЭР-1000, электрической мощностью 1000 МВт, которые были введены в эксплуатацию в 1984, 1986, 2004 и 2011 годах.
4 июня 2006 года было подписано соглашение о строительстве четвёртого энергоблока, который ввели в строй в 2011 году.
Кольская АЭС
Кольская АЭС расположена рядом с городом Полярные Зори Мурманской области, на берегу озера Имандра.
Состоит из четырёх блоков ВВЭР-440, введённых в эксплуатацию в 1973, 1974, 1981 и 1984 годах.
Мощность станции — 1760 МВт.
Курская АЭС
Курская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.
Расположена рядом с городом Курчатов Курской области, на берегу реки Сейм.
Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1976, 1979, 1983 и 1985 годах.
Мощность станции — 4000 МВт.
Ленинградская АЭС
Ленинградская АЭС — одна из четырёх крупнейших в России АЭС, одинаковой мощностью по 4000 МВт.
Расположена рядом с городом Сосновый Бор Ленинградской области, на побережье Финского залива.
Состоит из четырёх блоков РБМК-1000, введённых в эксплуатацию в 1973, 1975, 1979 и 1981 годах.
Мощность станции — 4 ГВт. В 2007 году выработка составила 24,635 млрд кВт•ч.
Нововоронежская АЭС
Расположена в Воронежской области рядом с городом Воронеж, на левом берегу реки Дон. Состоит из двух блоков ВВЭР.
На 85 % обеспечивает Воронежскую область электрической энергией, на 50 % обеспечивает город Нововоронеж теплом.
Мощность станции (без учёта Нововоронежской АЭС-2) — 1440 МВт.
Ростовская АЭС
Расположена в Ростовской области около города Волгодонск. Электрическая мощность первого энергоблока составляет 1000 МВт, в 2010 году подключен к сети второй энергоблок станции.
В 2001—2010 годах станция носила название «Волгодонская АЭС», с пуском второго энергоблока АЭС станция была официально переименована в Ростовскую АЭС.
В 2008 году АЭС произвела 8,12 млрд кВт-час электроэнергии. Коэффициент использования установленной мощности (КИУМ) составил 92,45 %. С момента пуска (2001) выработала свыше 60 млрд кВт-час электроэнергии.
Смоленская АЭС
Расположена рядом с городом Десногорск Смоленской области. Станция состоит из трёх энергоблоков, с реакторами типа РБМК-1000, которые введены в эксплуатацию в 1982, 1985 и 1990 годах.
В состав каждого энергоблока входят: один реактор тепловой мощностью 3200 МВт и два турбогенератора электрической мощностью по 500 МВт каждый.
Где еще используются ядерные реакторы?
Параллельно с созданием АЭС группа под руководством Курчатова проектировала атомный реактор, который можно было бы установить на ледокол
Эта задача была такой же важной, как и обеспечение электричеством, без расходования газа и угля
СССР, как, впрочем, и России, было важно на максимально большое время продлить навигацию в морях, которые лежат на севере. Атомные ледоколы могли обеспечить круглогодичную навигацию на этих территориях
Такие разработки были начаты в 53-м году, и спустя шесть лет в свое первое плавание был отправлен атомный ледокол «Ленин». Он исправно нес службу в условиях Арктики на протяжении 30 лет.
Не менее важным было и создание атомной подводной лодки. И она была спущена на воду в 57-м году. Тогда же эта подлодка осуществила поход подо льдами на Северный полюс и вернулась на базу. Название этой подводной лодки было «Ленинский комсомол».
Проблемы
Безопасность
Основная статья: Ядерная безопасность
АЭС Лайбштадт — последняя атомная станция, построенная в Швейцарии
Ядерная энергетика остаётся предметом острых дебатов. Сторонники и противники ядерной энергетики резко расходятся в оценках её безопасности, надёжности и экономической эффективности. Опасность связана с проблемами утилизации отходов, авариями, приводящими к экологическим и техногенным катастрофам, а также с возможностью использовать повреждение этих объектов (наряду с другими: ГЭС, химзаводами и тому подобным) обычным оружием или в результате теракта — как оружие массового поражения. «Двойное применение» предприятий ядерной энергетики, возможная утечка (как санкционированная, так и преступная) ядерного топлива из сферы производства электроэнергии и его теоретическое использование для производства ядерного оружия служат постоянными источниками общественной озабоченности, политических интриг и поводов к военным акциям (например, Операция «Опера», Иракская война).
Вместе с тем, выступающая за продвижение ядерной энергетики Всемирная ядерная ассоциация опубликовала в 2011 году данные, согласно которым гигаватт·год электроэнергии, произведённой на угольных электростанциях, в среднем (учитывая всю производственную цепочку) обходится в 342 человеческих жертвы, на газовых — в 85, на гидростанциях — в 885, тогда как на атомных — всего в 8.
Рентабельность
Высказываются сомнения в рентабельности ядерной энергетики. В связи с тем, что производство электричества на АЭС дорожает, а цена некоторых других источников электричества снижается, в условиях свободного рынка ядерные станции становятся убыточными. Так в США по причине нерентабельности были закрыты два реактора: АЭС Вермонт Янки и АЭС Кевони. Множество проектов строительства новых реакторов отменено или заморожено. В 2005 году Финляндия выдала разрешение на строительство третьего блока АЭС Олкилуото. Предполагалось, что энергоблок будет введён в эксплуатацию в 2010 году. По состоянию на 2015 год предполагалось, что реактор не будет запущен ранее 2018 года. Стоимость строительства данного реактора оценивалась в 3 миллиарда евро. На 2015 год затраты возросли на 2 миллиарда евро. В итоге Финляндия отменила запланированное строительство четвёртого энергоблока на Олкилуото. Правительства могут страховать АЭС от закрытия, гарантируя закупку электричества по установленной цене. Однако такие схемы также подвергаются критике из-за ограничения конкуренции и чрезмерной растраты денег налогоплательщиков.
Тепловое загрязнение
Одной из проблем ядерной энергетики является тепловое загрязнение. По мнению некоторых специалистов, атомные электростанции, «в расчёте на единицу производимой электроэнергии», выделяют в окружающую среду больше тепла, чем сопоставимые по мощности ТЭС. В качестве примера можно привести проект строительства в бассейне Рейна нескольких атомных и теплоэлектростанций. Расчеты показали, что, в случае запуска всех запланированных объектов, температура в ряде рек поднялась бы до +45°С, уничтожив в них всякую жизнь.