fbpx
No Image

Что такое астероиды: кратко

СОДЕРЖАНИЕ
0
03 января 2021

Самые крупные астероиды

Церера

Церера найдена итальянским астрономом Джузеппе Пиацци в начале XIX в. Это самый большой астероид в Солнечной системе.

Из-за размеров небесное тело отнесли к разряду карликовых планет. Существует гипотеза, что в недрах Цереры сосредоточены огромные залежи ледяной воды. Одни год на планете равен 4,6 земным. Находится на  расстоянии от Солнца в 2,77 астрономических единиц (413,9 млн. км).

Веста

Веста – второй открытый астрономами астероид. Миллиарды лет назад Веста столкнулся с другим небесным телом. В результате столкновения, астероид потерял 1% своей массы, а на поверхности остался большой кратер.

В ясные ночи Весту можно увидеть с помощью бинокля. От астероида иногда отделяются метеориты. Некоторые из них падают на Землю.

Известный астероид долгое время приковывал взоры ученых. Имеет сложное строение: кору, мантию и ядро. Для изучения Весты и других небесных тел НАСА создали аппарат «Рассвет».

Паллада

Как и предыдущие астероиды, получил имя в честь персонажа античной мифологии. Занимает третье место по массе и размерам. Именем Паллады назван химический элемент таблицы Менделеева.

Гигея

Астероид обнаружен в середине XIX века. На оборот вокруг Солнца у Гигеи уходит 5,5 лет. На долю небесного тела приходится 90 % от массы своего семейства. Астероид назвали именем греческой богини здоровья. Находится на большом расстоянии от Солнца – от 2,5 до 3,5 а.е.

Поверхность астероида довольно темная, поэтому наблюдать за ним с Земли можно лишь через телескоп.

Интерамния

Расстояние астероида от Солнца колеблется от 2,6 до 3,5 а. е. На оборот вокруг звезды у небесного тела уходит 5,3 года. На долю Интерамнии приходится 1,2 % от массы астероидного пояса.

Поверхность плохо отражает свет Солнца, поэтому Интерамния обнаружен лишь в начале XX века. Небесное тело изучено плохо: состав, строение и форма неизвестны. Ученые считают, что поверхность Интерамнии покрыта реголитом и мелкодисперсной пылью, а в недрах астероида существуют твердые породы.

Давида

Давида открыт американскими учеными. Получил название в честь профессора одного из колледжей США.

Для того, чтобы совершить оборот вокруг Солнца телу требуется 5,64 года. На его долю приходится 1,5 % массы от астероидов Солнечной системы. В отличии от Интерамнии форма Давида определена довольно точно. В частности, удалось выяснить, что на астероиде существует большой кратер.

Сильвия

По одной из гипотез Сильвия – обломки более крупного астероида, держащиеся вместе благодаря гравитации. Небесное тело получило название в честь матери легендарных основателей Рима – Ромула и Рема.

Вокруг астероида летают два маленьких спутника. Их движение служит причиной солнечных затмений на астероиде. Орбита небесного тела − от 3,2 до 3,7 а. е. Совершает оборот вокруг Солнца за 6,5 лет.

Эвномия

Астероид открыт во второй половине XIX века и назван в честь персонажа античной мифологии. Для того, чтобы совершит оборот вокруг Солнца, Эвномии требуется 4,3 года. Орбита составляет от 2,1 до 3,3 а. е.

Евфросина

Евфросина – богиня веселья в древнегреческой мифологии. Астероид открыт в середине XIX века. По орбитальным характеристикам напоминает Палладу. В прошлом столкновение Евфросины с другим небесным телом стало причиной появления группы околоземных астероидов.

Гектор

Астероид открыт в начале XX века. Появился после того, как два других небесных тела слились с помощью гравитации. Гектор самый длинный среди астероидов солнечной системы, имеет собственный спутник.

Европа

Отрыт во второй половине XIX в. Находится в 3,1 а. е. от Солнца. Для оборота вокруг Солнца небесному телу требуется 5,6 лет.

Формы и размеры астероидов:

В определении термина астероид указывается как небесное тело неправильной формы, и это стало одной из причин исключения их из ряда планет, но самые крупные объекты все же похожи на шар – чем же это объяснить?

Ученые полагают, что при формировании Солнечной системы астероиды имели значительные размеры и соответствующую форму, но в процессе своей «жизни» они сталкивались с другими космическими объектами, подвергались взрывам и распадам. Так, сохранить свое первоначальное состояние удалось лишь единицам. На небесных же телах малых размеров уменьшена и сила тяжести, что не позволяет сминать и утрамбовывать тяжелые вещества, придавая поверхности привычную форму шара. Поэтому астероиды существуют в виде агрегатов, в состав которых входит несколько блоков. Они удерживаются между собой силой тяготения, которая также не позволяет им прочно объединяться и сливаться между собой. Все эти параметры и формируют искомую форму, которую принято считать неправильной.

Еще одни важный критерий – размер. Так, ученые определили, что объектами данного типа считаются тела, превышающие 30 метров в диаметре, но как точно измерить размер с Земли? Для этого применяется несколько методов.

Впервые измерить диаметр небесного тела ученые решились еще в начала XIX века, применив нитяной микрометр. Это устройство, совмещаемое с телескопом, представляющее собой две тончайшие нити или проволоки, расстояние между которыми изменяется благодаря винтовому механизму высокой точности. Недостатком такой методики выступил тот факт, что при использовании различных телескопов получались разные результаты и иногда разница в показателях превышала разы.

Развитие науки и техники позволило изобрети другие способы определения размеров, самым популярными из которых стали транзитный метод и поляриметрия.

Суть первого заключается в том, что все небесные тела движутся, и когда астероид проходит на фоне отдаленной звезды, она его покрывает. Если известно расстояние до астероида, достаточно измерить длительность уменьшения сияния звезды, чтобы получить весьма точный размер искомого небесного тела. Недостаток методики – сравнительная точность расчетов присуща лишь крупным объектам.

В основе поляриметрии лежат параметры яркости самого астероида. Так, чем крупнее его размеры, тем больше солнечных лучей способна отразить его поверхность. Однако следует учитывать, что отражательные способности зависят от химических элементов, преобладающих в составе: наличие металлов сделает объект более ярким даже при небольших параметрах. Однако и отражательную способность (альбедо) ученые легко определяют при помощи инфракрасных излучателей, основываясь на принципе: чем меньше света отражает тело, тем сильнее он его поглощает и нагревается, а, следовательно, больше тепловой энергии выделяет.

Используется поляриметрия и для определения формы небесного тела. Метод позволяет зафиксировать различия в блеске, изменяющиеся во время вращения астероида вокруг своей орбиты. Эти же наблюдения дают возможность изучить период вращения и структуру поверхности, обнаружить на ней крупные выступы и впадины.

Дополнительно используются такие методы:

– радиолокационный. Основывается на сравнении данных зондов и эхолокаций, считается одной из самых точных методик. Позволяет изучить, скорость вращения и траекторию движения, особенности поверхности, расстояние до объекта и прочее;

– спекл-интерферометрия. Суть метода состоит в детальном изучении зернистой структуры изображения небесного тела.

Как зовут астероиды?

Первые обнаруженные астероиды получали имена древнегреческих мифологических героев и богов. По странному стечению обстоятельств, сначала это были женские имена, на мужское же имя мог рассчитывать разве что астероид с необычной орбитой. Позже эта тенденция постепенно сошла на нет.

К тому же, право давать астероидам любые имена получили люди, впервые их открывающие. Таким образом, сегодня тот, кто обнаружит новый астероид, может дать ему название по своему вкусу, и даже назвать его своим собственным именем.

Но есть и определенные правила именования астероидов. Давать им названия можно только после того, как орбита небесного тела будет надежно вычислена, а до этого времени астероиду дают непостоянное имя. Обозначение астероида отражает дату его обнаружения.

Например, 1975DС, где цифры означают год, буква D – это номер полумесяца в году, когда был обнаружен астероид, а С – порядковый номер небесного тела в этом полумесяце (приведенный в пример астероид был открыт третьим). Всего полумесяцев 24, букв в английском алфавите 26, поэтому две буквы – I и Z –при именовании астероидов решили не использовать. Если за один полумесяц будет открыто больше, чем 24 астероида, второй букве приписывают индекс 2, затее – 3, и так далее. И уже после того, как астероид получит имя официально (а бывает, что на это уходит не одно десятилетие – все это время просчитывается орбита), его название включает порядковый номер и само имя.

Современные исследования


Автоматическая межпланетная станция Dawn вблизи астероида Веста и карликовой планеты Цереры (компьютерная графика). Изображение: Wikimedia Commons

С началом космической эры стало возможно исследования астероидов с помощью космических аппаратов. Сначала астероиды сфотографировал зонд «Галилео, который снял астероиды Ида и Гаспра в 1993 г. С тех пор каждый аппарат, летящий в дальний космос, обязательно по пути пролетает и мимо какого-нибудь объекта в главном поясе и фотографирует его.

Первый космический зонд, созданный специально для исследования астероида – это NEAR Shoemaker. Его запустили в 1996 г., а в феврале 2000 г. он вышел на орбиту астероида Эрос. Удалось детально исследовать его химический состав, а также построить трехмерную модель небесного тела. В 2001 г. зонд осуществил посадку на Эрос и в течение двух недель исследовал его грунт на глубине до 10 см.

В 2003 г. был запущен японский зонд «Хаябуса», который исследовал астероид Итокава. Аппарат смог собрать образцы грунта с Итокавы и отправить их на Землю.

Следующий аппарат, исследовавший главный пояс – это станция DAWN. В 2011-2012 г. она исследовала астероид Веста, а с 2015 по 2018 г. – Цереру. В результате удалось получить почти 69 тысяч фотографий этих объектов и множество других данных.

Что будет, если астероид столкнется с Землей?

Астероиды навевают ужас на все человечество с момента их открытия. И не зря. Астрономы давно говорят: не надо спрашивать, возможно ли это, надо думать, когда это случится. В NASA и Европейском космическом агентстве посчитали, что в 2022 году к Земле приблизится опасный астероид 65803 Дидим и его спутник Дидимун. Диаметр Дидима около 780 метров, а Дидимуна примерно 170 метров. Меньший из них вращается вокруг большего раз в 11,9 часа, а расстояние между ними всего 1100 метров.

Чтобы избежать столкновения, к Дидиму и Дидимуну отправят два зонда Asteroid Impact Monitor (AIM), полет запланирован на конец 2020 года, и Double Asteroid Redirection Test (DART), его пуск назначен на 2021 год. Первый зонд подойдет к астероиду, чтобы изучить состав небесного тела. Второй зонд предполагается разбить о Дидимун, а первый будет наблюдать за происходящим, заодно измерив изменение параметров его орбиты. По данным NASA, на сегодня открыто около 15 тысяч «потенциально опасных» астероидов. Каждую неделю в этот каталог добавляют еще около 30 новых объектов. Но это чуть больше четверти от всех угрожающих нашей планете небесных тел.

Последний раз крупное столкновение астероидов с Землей произошло, а, точнее, закончилось на территории России. В 2013 году на высоте 30 км метеорит (осколок крупного астероида) разорвался над Челябинском. Из окон повыбивало стекла, 1400 человек получили травмы. Мощность взрыва была эквивалентна примерно 500 килотоннам это где-то в 30 раз больше мощности атомной бомбы, сброшенной на Хиросиму, но он произошел довольно высоко над землей, что позволило избежать серьезных разрушений.

Открытие

Орбиты и пояса астероидов

Как распознать метеорит

Львиная доля метеоритов находится совершенно случайно. Есть несколько признаков того, что найден именно метеоритный объект, а не какое-то другое тело:

  • высокий уровень плотности, что обеспечивает массу, большую в сравнении с гранитом или осадочными породами;
  • наличие углублений сглаженного типа, внешне они напоминают вмятины пальцев, оставшиеся на мягкой глине;
  • сходство с затупленной снарядной головкой;
  • тонкость коры плавления, составляющая порядка 1 миллиметра;
  • серый цвет излома, на котором не составит труда обнаружить небольшие шарики;
  • наличие вкраплений из железного материала;
  • обладание магнитными свойствами, что ведёт к намагничиванию стрелки компаса;
  • окисление в воздушной среде, что влечёт образование ржавчины.

Так, ответ на вопрос, из чего состоит метеорит, найден. Несмотря на это, данные объекты продолжают исследоваться учёными.

Астероиды, представляющие опасность для Земли

Некоторые из небесных тел пролетают достаточно близко от нашей планеты. Такие астероиды называют потенциально опасными для Земли. Обнаружено больше тысячи небесных тел, путь которых проходит в непосредственной близости от голубой планеты.

Апофис

Крупный Астероид обнаружен в 2004 году. Название получил в честь бога древнеегипетской мифологии. Орбита тела проходит вблизи от Земли, но столкновение с Апфисом, по словам НАСА, маловероятно. Во время следующего сближения с Землей в 2029 году Апофис можно будет наблюдать невооруженным глазом.

2007 TU24

Небесное тело открыто в 2007 году. Путь 2007 TU24 как и у Апофиса пролегает рядом с Землей. Опасность столкновения астероида с планетой крайне низка.

2005 YU55

Еще один астероид, представляющий потенциальную опасность для Земли открыт в 2005 году. Он пролетал рядом с Землей в 2011 и в 2015 годах.

Дуэнде

Астероид обнаружен недавно – в 2012 г. Дуэндэ относительно невелик. В 2013 г. он пролетал на опасно близком расстоянии от Земли в 22 тыс км.

Эрос

Открыт в конце XIX века. Получил название в честь древнегреческого бога любви. В 2004 г. на поверхность Эроса приземлился космический аппарат НАСА: это первый подобный опыт в истории изучения космоса. Считается, что через сотни тысяч лет Эрос может столкнуться с Землей.

Обнаружен в 1996 году. 2001 WN5 пройдет на близком расстоянии от Земли в 2028 году, которое составит 249 тыс. км.

2013 TV135

В ближайшем будущем астероид не будет представлять опасности для Земли. Очередное сближение намечено на 2032 год. В это время 2013 TV135 пройдет на расстоянии 56 млн км от планеты.

О перспективах освоения

Взаимодействие с Землей

изображение падения на Землю

Подсчитано, что для
полного уничтожения человеческой цивилизации и глобальных изменений атмосферы и
климата, Земле надо столкнуться с астероидом диаметром всего 3 км.  Крупнейшим ударным кратером на планете
является южноафриканский кратер Вредефорт, чей диаметр составляет 300 км. Он
образовался 2 млрд. лет назад при столкновении Земли с малым небесным телом, не
превышающим 10 км.

Потенциально опасными для
нашей планеты считаются те объекты главного астероидного пояса, которые могут
приблизиться к ней на расстоянии менее 7,5 млн. км. Опасность астероида
оценивают по Туринской шкале от 0 до 10. Нулевая отметка означает крайне низкую
вероятность столкновения и отсутствие ущерба при попадании в атмосферу планеты.
Астероиды, имеющие 10 баллов, неизбежно столкнутся с Землей и вызовут
глобальную катастрофу, ведущую к гибели человечества.

По состоянию на июнь 2018 года все астероиды главного пояса имеют оценку не выше 0 по Туринской шкале. Ранее представляющими некоторую угрозу считались Апофис (4 балла) и  (144898) 2004 VD17 (2 балла), но и их показатели снизились до нуля.

В 21 веке наиболее близко
к Земле приближались:

  • 2008 TS26 – пролетел над
    планетой на расстоянии 6 тыс. км 9 октября 2008;
  • 2004 FU162 – приблизился до
    6530 км 31 марта 2004 года;
  • 2009 VA – 14 тыс. км 6 ноября 2009 года.

Некоторые астероиды Солнечной системы достигали атмосферы Земли, но они были настолько незначительных размеров, что разрывались, не достигая поверхности планеты, оставляя лишь мелкие обломки.

В феврале 2013 года
астероид размерами около 17 м и весом до 10*106 кг вошел в атмосферу
нашей планеты. Он разорвался на высоте 20 км над Челябинском и окрестностями.
По оценкам разных исследователей мощность взрыва составила от 100 килотонн до
1,5 мегатонн в тротиловом эквиваленте. Сгорание объекта в земной атмосфере
сопровождалось сильной ударной волной, выбившей большое количество стекол в
близлежащих населенных пунктах. Также столкновение астероида с Землей
спровоцировало землетрясение магнитудой в 4 балла в юго-западных районах
Челябинска.

Падение астероида
Челябинск стало самым крупным происшествием такого рода после столкновения
Земли с Тунгусским метеоритом. Произошло это в 1908 году в районе правого
притока реки Енисей.  Мощность взрыва
составила около 40 мегатонн, что спровоцировало массовый вал деревьев в тайге
на площади более 2 тыс. кв. км.

НАСА финансирует
большинство действующих программ, связанных с космической безопасностью и
защитой Земли от астероидов Солнечной системы. Самые крупные проекты «LINEAR» и
«Pan-STARRS», использующие мощнейшие телескопы, отслеживают до десяти тысяч
малых тел ежегодно. Также обнаружения потенциально опасных космических объектов
ведется с околоземной орбиты благодаря малым спутникам, таким как канадский
«NEOSSat». На финансирование данных проектов у НАСА и других космических
агентств уходит сотни миллионов долларов.

Астероиды в прошлом
Земли

Что произойдет, если с Землей столкнется астероид диаметром больше 10 км? Первым катастрофическим событием будет гигантская ударная волна в атмосфере. Далее тело упадет на поверхность планеты, что закончится  либо невиданным землетрясением, либо цунами высотой в несколько сотен метров. Тепловая волна вызовет лесные пожары по всему земному шару, что спровоцирует выброс в атмосферу огромного количества сажи и копоти. Начнется резкое похолодание из-за того, что загрязненная атмосфера не сможет пропускать солнечные лучи в достаточном количестве. Климат на планете необратимо изменится, а многие живые организмы вымрут.

Одно из таких
столкновений произошло 65 млн. лет назад. На полуострове Юкатан в Мексиканском
заливе сохранилось свидетельство этой катастрофы – ударный кратер Чиксулуб
диаметром 180 км. Крупный космический объект размерами около 10 км привел к
полному вымиранию динозавров на нашей планете. Также падением крупного
астероида некоторые исследователи объясняют массовое пермское вымирание живых
организмов, случившееся 250 млн. лет назад.

Семейства астероидов

Определение формы и размеров астероида

Астероид (951) Гаспра. Одно из первых изображений астероида, полученных с космического аппарата. Передано космическим зондом «Галилео» во время его пролёта мимо Гаспры в 1991 году (цвета усилены)

Первые попытки измерить диаметры астероидов, используя метод прямого измерения видимых дисков с помощью нитяного микрометра, предприняли Уильям Гершель в 1802 году и Иоганн Шрётер в 1805. После них в XIX веке аналогичным способом проводились измерения наиболее ярких астероидов другими астрономами. Основным недостатком данного метода были значительные расхождения результатов (например, минимальные и максимальные размеры Цереры, полученные разными учёными, отличались в десять раз).

Современные способы определения размеров астероидов включают в себя методы поляриметрии, радиолокационный, спекл-интерферометрии, транзитный и тепловой радиометрии.

Одним из наиболее простых и качественных является транзитный метод. Во время движения астероида относительно Земли он иногда проходит на фоне отдалённой звезды, это явление называется покрытие звёзд астероидом. Измерив длительность снижения яркости данной звезды и зная расстояние до астероида, можно достаточно точно определить его размер. Данный метод позволяет достаточно точно определять размеры крупных астероидов, вроде Паллады.

Метод поляриметрии заключается в определении размера на основании яркости астероида. Чем больше астероид, тем больше солнечного света он отражает. Однако яркость астероида сильно зависит от альбедо поверхности астероида, что в свою очередь определяется составом слагающих его пород. Например, астероид Веста из-за высокого альбедо своей поверхности отражает в 4 раза больше света, чем Церера и является самым заметным астероидом на небе, который иногда можно наблюдать невооружённым глазом.

Однако само альбедо тоже можно определить достаточно легко. Дело в том, что чем меньше яркость астероида, то есть чем меньше он отражает солнечной радиации в видимом диапазоне, тем больше он её поглощает и, нагреваясь, излучает её затем в виде тепла в инфракрасном диапазоне.

Метод поляриметрии может быть также использован для определения формы астероида, путём регистрации изменения его блеска в процессе вращения, так и для определения периода этого вращения, а также для выявления крупных структур на поверхности. Кроме того, результаты, полученные с помощью инфракрасных телескопов, используются для определения размеров методом тепловой радиометрии.

Изучение астероидов

Изучение астероидов началось после открытия в 1781 году Уильямом Гершелем планеты Уран. Его среднее гелиоцентрическое расстояние оказалось соответствующим правилу Тициуса — Боде.

В конце XVIII века Франц Ксавер организовал группу из 24 астрономов. С 1789 года эта группа занималась поисками планеты, которая, согласно правилу Тициуса-Боде, должна была находиться на расстоянии около 2,8 астрономических единиц от Солнца — между орбитами Марса и Юпитера. Задача состояла в описании координат всех звёзд в области зодиакальных созвездий на определённый момент. В последующие ночи координаты проверялись, и выделялись объекты, которые смещались на большее расстояние. Предполагаемое смещение искомой планеты должно было составлять около 30 угловых секунд в час, что должно было быть легко замечено.

По иронии судьбы первый астероид, Церера, был обнаружен итальянцем Пиацци, не участвовавшим в этом проекте, случайно, в 1801 году, в первую же ночь столетия. Три других — (2) Паллада, (3) Юнона и (4) Веста были обнаружены в последующие несколько лет — последний, Веста, в 1807 году. Ещё через 8 лет бесплодных поисков большинство астрономов решило, что там больше ничего нет, и прекратило исследования.

Однако Карл Людвиг Хенке проявил настойчивость, и в 1830 году возобновил поиск новых астероидов. Пятнадцать лет спустя он обнаружил Астрею, первый новый астероид за 38 лет. Он также обнаружил Гебу менее чем через два года. После этого другие астрономы подключились к поискам, и далее обнаруживалось не менее одного нового астероида в год (за исключением 1945 года).

В 1891 году Макс Вольф впервые использовал для поиска астероидов метод астрофотографии, при котором на фотографиях с длинным периодом экспонирования астероиды оставляли короткие светлые линии. Этот метод значительно ускорил обнаружение новых астероидов по сравнению с ранее использовавшимися методами визуального наблюдения: Макс Вольф в одиночку обнаружил 248 астероидов, начиная с (323) Брюсия, тогда как до него было обнаружено немногим более 300. , век спустя, 385 тысяч астероидов имеют официальный номер, а 18 тысяч из них — ещё и имя.

В 2010 году две независимые группы астрономов из США, Испании и Бразилии заявили, что одновременно обнаружили водяной лёд на поверхности одного из самых крупных астероидов главного пояса — Фемиды. Это открытие позволяет понять происхождение воды на Земле. В начале своего существования Земля была слишком горяча, чтобы удержать достаточное количество воды. Это вещество должно было прибыть позднее. Предполагалось, что воду на Землю могли занести кометы, но изотопный состав земной воды и воды в кометах не совпадает. Поэтому можно предположить, что вода на Землю была занесена при её столкновении с астероидами. Исследователи также обнаружили на Фемиде сложные углеводороды, в том числе молекулы — предшественники жизни.

8 сентября 2016 года запущена американская межпланетная станция OSIRIS-REx, предназначенная для доставки образцов грунта с астероида (101955) Бенну (достижение астероида и забор грунта запланировано на 2019 год, а возвращение на Землю — на ).

Какой астероид был открыт первым?

Классификация по спектру

Спектральная классификация основывается на спектре электромагнитного излучения, который является результатом отражения астероидом солнечного света. Регистрация и обработка данного спектра дает возможность изучить состав небесного тела и определить астероид в один из следующих классов:

  • Группа углеродных астероидов или C-группа. Представители данной группы состоят по большей части из углерода, а также из элементов, которые входили в состав протопланетного диска нашей Солнечной системы на первых этапах ее формирования. Водород и гелий, а также другие летучие элементы практически отсутствуют в углеродных астероидах, однако возможно наличие различных полезных ископаемых. Другой отличительной чертой подобных тел является низкое альбедо – отражающая способность, что требует использования более мощных инструментов наблюдения, нежели при исследовании астероидов других групп. Более 75% астероидов Солнечной системы являются представителями C-группы. Наиболее известными телами данной группы есть Гигея, Паллада, и некогда — Церера.
  • Группа кремниевых астероидов или S-группа. Астероиды такого типа состоят в основном из железа, магния и некоторых других каменистых минералов. По этой причине кремниевые астероиды также называются каменными. Такие тела имеет достаточно высокий показатель альбедо, что позволяет наблюдать за некоторыми из них (например Ирида) просто при помощи бинокля. Число кремниевых астероидов в Солнечной системе составляет 17% от общего количества, и они наиболее распространены на расстоянии до 3-х астрономических единиц от Солнца. Крупнейшие представители S-группы: Юнона, Амфитрита и Геркулина.

Эрос, представитель астероидов класса S

Группа железных астероидов или X-группа. Наименее изученная группа астероидов, распространенность которых в Солнечной системе уступает двум другим спектральным классам. Состав таких небесных тел еще недостаточно хорошо изучен, однако известно, что большинство из них имеют в своем составе высокий процент металлов, иногда никель и железо. Предполагается, что данные астероиды являются осколками ядер некоторых протопланет, формировавшихся на ранних этапах образования Солнечной системы. Могут обладать как высоким, так и низким показателем альбедо.

Интересные факты об астероидах

Классификация по орбитам

Классификация астероидов

Общая классификация астероидов основана на характеристиках их орбит и описании видимого спектра солнечного света, отражаемого их поверхностью.

Группы орбит и семейства

Астероиды объединяют в группы и семейства на основе характеристик их орбит. Обычно группа получает название по имени первого астероида, который был обнаружен на данной орбите. Группы — относительно свободные образования, тогда как семейства — более плотные, образованные в прошлом при разрушении крупных астероидов от столкновений с другими объектами.

Спектральные классы

В 1975 году Кларк Р. Чапмен (Clark R. Chapman), Дэвид Моррисон (David Morrison) и Бен Целлнер (Ben Zellner) разработали систему классификации астероидов, опирающуюся на показатели цвета, альбедо и характеристики спектра отражённого солнечного света. Изначально эта классификация определяла только три типа астероидов:

Класс С — углеродные, 75 % известных астероидов.
Класс S — силикатные, 17 % известных астероидов.
Класс M — металлические, большинство остальных.

Этот список был позже расширен и число типов продолжает расти по мере того, как детально изучается все больше астероидов:

Класс A — характеризуются достаточно высоким альбедо (между 0,17 и 0,35) и красноватым цветом в видимой части спектра.
Класс B — в целом относятся к астероидам класса C, но почти не поглощают волны ниже 0,5 мкм, а их спектр слегка голубоватый. Альбедо в целом выше, чем у других углеродных астероидов.
Класс D — характеризуются очень низким альбедо (0,02−0,05) и ровным красноватым спектром без чётких линий поглощения.
Класс E — поверхность этих астероидов содержит в своём составе такой минерал, как энстатит и может иметь сходство с ахондритами.
Класс F — в целом схожи с астероидами класса B, но без следов «воды».
Класс G — характеризуется низким альбедо и почти плоским (и бесцветным) в видимом диапазоне спектром отражения, что свидетельствует о сильном ультрафиолетовом поглощении.
Класс P — как и астероиды класса D, характеризуются довольно низким альбедо, (0,02−0,07) и ровным красноватым спектром без чётких линий поглощения.
Класс Q — на длине волны 1 мкм в спектре этих астероидов присутствуют яркие и широкие линии оливина и пироксена и, кроме того, особенности, указывающие на наличие металла.
Класс R — характеризуются относительно высоким альбедо и красноватый спектром отражения на длине 0,7 мкм.
Класс T — характеризуется низким альбедо и красноватым спектром (с умеренным поглощением на длине волны 0,85 мкм), который похож на спектр астероидов P- и D- классов, но по наклону занимающий промежуточное положение.
Класс V — астероиды этого класса умеренно яркие и довольно близки к более общему S классу, которые также в основном состоят из камня, силикатов и железа (хондритов), но отличаются S более высоким содержанием пироксена.
Класс J — это класс астероидов, образовавшихся, предположительно, из внутренних частей Весты. Их спектры близки к спектрам астероидов V класса, но их отличает особо сильные линии поглощения на длине волны 1 мкм.

Следует учитывать, что количество известных астероидов, отнесённых к какому-либо типу, не обязательно соответствует действительности. Некоторые типы достаточно сложны для определения, и тип определённого астероида может быть изменён при более тщательных исследованиях.

Проблемы спектральной классификации

Изначально спектральная классификация основывалась на трёх типах материала, составляющего астероиды:

Класс С — углерод (карбонаты).
Класс S — кремний (силикаты).
Класс M — металл.

Однако существуют сомнения в том, что такая классификация однозначно определяет состав астероида. В то время, как различный спектральный класс астероидов указывает на их различный состав, нет никаких доказательств того, что астероиды одного спектрального класса состоят из одинаковых материалов. В результате учёные не приняли новую систему, и внедрение спектральной классификации остановилось.

Распределение по размерам

Количество астероидов заметно уменьшается с ростом их размеров. Хотя это в целом соответствует степенному закону, есть пики при 5 км и 100 км, где больше астероидов, чем ожидалось бы в соответствии логарифмическому распределению.

Приблизительное количество астероидов N с диаметром больше чем D
D 100 м 300 м 500 м 1 км 3 км 5 км 10 км 30 км 50 км 100 км 200 км 300 км 500 км 900 км
N 25 000 000 4 000 000 2 000 000 750 000 200 000 90 000 10 000 1100 600 200 30 5 3 1

Околоземные объекты

Когда был открыт охотничий сезон

Еще со времен Кеплера ученым очень «не нравилась» слишком большая брешь между Юпитером и Марсом – туда просто «просилась» еще одна планета. И ее там усиленно искали. В 1801 году итальянский астроном Джузеппе Пиацци увидел в этом промежутке тусклую звезду, которая была первоначально им принята за комету. Так мы познакомились с Церерой.

Это побудило группу астрономов из Германии заняться активным поиском новых объектов в главном поясе. Результаты не заставили себя долго ждать: в течение пяти лет были обнаружены еще три крупных астероида – Паллада, Юнона и Веста. После чего на несколько десятилетий поиски прекратились. Только в 1838 году астроному-любителю Карлу Хенке удалось открыть Астрею. После этого началась настоящая «охота за астероидами» – с каждым годом в специальные каталоги попадало все больше астероидов.

В 1891 году немецкий ученый Макс Вольф предложил использовать новый метод – астрофотографию, что значительно упростило и ускорило изыскания. С его помощью Вольф лично обнаружил более 240 объектов.

Астероид Ида 243. Его изображение передал на Землю исследовательский аппарат «Галилео»

В последние десятилетия поиски астероидов ведутся с использованием чувствительных фотометров и мощных компьютеров, способных быстро вычислять орбиты объектов. Космические аппараты и современная техника позволяют не только обнаруживать новые небесные тела, но и исследовать химический состав и поверхность астероидов.

Так, например, 28 августа 1993 года американская станция «Галилео» передала на Землю первые изображения астероида 243 Иды. А буквально в начале этого года межпланетный зонд «Новые горизонты» показал нам удивительный внешний вид «снеговика» Ультима Туле. В 2016 году к астероиду Бену отправился исследовательский аппарат OSIRIS-Rex, главная задача которого – забор и доставка на Землю грунта с этого астероида

Прямо сейчас внимание всего мира приковано к новостям миссии «Хаябуса-2», которая работает на астероиде Рюгу

Оптические исследования.

Поскольку астероиды очень малы и далеки от Земли, с помощью крупных телескопов удается измерять лишь переменность отраженного ими солнечного света и его спектральные характеристики. Примерно у 2000 астероидов измерены оптические свойства поверхности и период вращения вокруг оси, оценены размер и форма. Крупнейший из астероидов Церера чуть менее 1000 км диаметром, несколько десятков имеют диаметр более 100 км, размеры остальных лежат в широком диапазоне, вероятно, вплоть до размеров метеоритов. В последнее время создаются автоматизированные телескопы для непрерывного поиска астероидов, которые позволят в начале 21 в. обнаружить все астероиды диаметром более 1 км.

По спектральным характеристикам отраженного света астероиды объединяют в несколько типов, близких к типам метеоритов, что неудивительно, ибо происхождение почти всех метеоритов связано с астероидами (за исключением немногих, прилетевших с Луны и Марса). Однако нет астероидов типа обыкновенных хондритов – наиболее многочисленных метеоритов, близких по составу к планетам земной группы. Вероятная причина этого в том, что под влиянием солнечного излучения и микрометеоритной бомбардировки поверхность астероидов, близких по структуре и составу к обыкновенным хондритам, изменила цвет и стала умеренно отражающей свет поверхностью типа S, в спектре которой присутствуют полосы поглощения силикатных минералов оливина и пироксена.

Физические характеристики

Комментировать
0