fbpx
СОДЕРЖАНИЕ
0
04 января 2021

Примечания

  1. Гляциологический словарь / В. М. Котляков. — М.: Наука, 1984. — 527 с. — 5600 экз.
  2. Ледниковый период — статья из Большой советской энциклопедии. 
  3. Кропоткин П. А. Путешествие по Лене // Записки для чтения. 1867. № 1. Отд. 3. С. 1-16.
  4. Обручев В. А. Пётр Алексеевич Кропоткин. (1842—1921) // Люди русской науки. Очерки о выдающихся деятелях естествознания и техники. Т. 1. М.; Л.: ОГИЗ, 1948. С. 588—598
  5. Величко А. А. П. А. Кропоткин как создатель учения о ледниковом периоде // Известия АН СССР. Серия география. 1957. № 1. С. 122—126.
  6. Асеев А. А. Современное значение идей П. А. Кропоткина о ледниковом периоде (К 100-летию публикации «Исследований о ледниковом периоде») // Известия АН СССР. Серия география. 1976. № 2. С. 96-101.
  7. Асеев А. А. П. А. Кропоткин — основоположник теории материкового оледенения: (К 100-летию выхода в свет «Исследований о ледниковом периоде») // Геоморфология. 1976. № 3. С. 48-55.
  8. Шанцер Е. В. Роль П. А. Кропоткина в становлении ледниковой теории // Бюллетень МОИП. Отд. геол. 1976. Т. 51. № 4. С. 64-76.
  9. Кропоткин П. А. Записки революционера / Пер. с англ. под ред. автора. — Лондон: Фонд вольной русской прессы, 1902. — XX, 477 с. — (Историческая библиотека; Вып. 1).

Причины оледенений

В науке существуют различные теории о причинах оледенений:

  • Замечено, что все великие оледенения совпадали с крупнейшими горообразовательными эпохами, когда рельеф земной поверхности был наиболее контрастным и площадь морей уменьшалась. В этих условиях колебания климата стали более резкими. Однако средние высоты гор сейчас не меньше, а может быть, даже больше тех, какие были во время оледенений, тем не менее сейчас площадь ледников относительно невелика;
  • Изучение современной и древней вулканической деятельности позволило вулканологу И. В. Мелекесцеву связать оледенения с увеличением интенсивности вулканизма. До настоящего времени большинством исследователей роль вулканизма в проявлении оледенений преуменьшалась. Однако не следует и преувеличивать значение этого фактора. Хорошо известно, что в позднемеловую эпоху и в палеогене не существовало сколько-нибудь значительных ледников, хотя в то время были сформированы колоссальные покровы из вулканического материала вокруг Тихого океана;
  • Некоторые гипотезы предполагали периодические изменения светимости Солнца, однако по мере развития астрофизики от них пришлось отказаться: ни теоретические расчёты, ни результаты наблюдений не давали оснований для таких предположений. Американский физик Роберт Эрлих создал компьютерную модель поведения солнечной плазмы на основе гипотезы венгерского теоретика Аттилы Грандпьера (англ.)русск., предположившего существование внутри Солнца «резонансных диффузионных волн» своеобразного механизма самоусиления флуктуации, приводящего к заметным изменениям температуры плазмы, а, следовательно, и светимости Солнца. В модели Эрлиха получалось, что такие колебания имеют выраженную периодичность, хорошо совпадающую с периодичностью наступления-отступления ледников;
  • Существует гипотеза о связи эпохи похолоданий с прохождением Солнечной системы через газо-пылевые сгущения, тем самым приводящем к косвенному понижению светимости Солнца относительно Земли[источник не указан 119 дней].
  • Ещё в XIX веке Луи Агассис, Альфонс Жозеф Адемар, Джеймс Кролл (англ.)русск. и другие выдвигали идеи о том, что изменение параметров орбиты Земли и оси её вращения может приводить к изменению количества тепла Солнца, которое поступает на поверхность Земли на разных её широтах. К концу XIX века развитие небесной механики позволило рассчитать изменения орбитальных и вращательных характеристик Земли, и в начале XX века Милутин Миланкович завершил создание астрономической теории ледниковых периодов (циклы Миланковича);
  • Существует гипотеза, согласно которой наступление ледника вызывается не похолоданием, а потеплением глобального климата. Модель, предложенная в 1956 году американскими геофизиками Морисом Юингом и Уильямом Донном, предусматривает, что время роста ледников — это время максимального прогрева Северного Ледовитого океана. Освобождаясь ото льдов, он начинает испарять огромное количество воды, основная часть которой выпадает в виде снега на приполярные области суши. Из этого снега и рождается ледник. Но, высасывая влагу из Мирового океана, ледник понижает его уровень, что в конце концов приводит к тому, что Гольфстрим уже не может прорваться из Атлантики в полярные моря. В результате этого Северный Ледовитый океан в какой-то момент покрывается сплошными, нетающими льдами, после чего ледник начинает сжиматься, поскольку замёрзший океан уже не питает его снегом. По мере таяния (точнее, сублимации, сухого испарения) ледника уровень Мирового океана повышается, Гольфстрим проникает в Арктику, полярные воды освобождаются ото льда, и цикл начинается сначала.

Вероятно, что оледенения вызывались совокупностью вышеперечисленных факторов.

Загадка их пульсации

В середине XX века люди столкнулись с еще одной проблемой — пульсирующими ледниками, отличающимися внезапными продвижениями своих концов, вне видимой связи с изменениями климата. Сейчас известны сотни пульсирующих ледников во многих ледниковых районах. Больше всего их на Аляске, в Исландии и на Шпицбергене, в горах Центральной Азии, на Памире.

Общей причиной ледниковых подвижек служит накопление льда в условиях, когда расход его затруднен узостью долины, моренным покровом, взаимным подпруживанием основного ствола и боковых притоков и т.п. Такое накопление создает условия неустойчивости, вызывающие сток льда: большие сколы, разогрев льда с выделением воды в процессе внутреннего таяния, появление водной и водно-глинистой смазки на ложе и сколах. 20 сентября 2002 года в долине реки Геналдон в Северной Осетии произошла катастрофа. Из верховьев долины вырвались огромные массы льда, смешанного с водой и каменным материалом, стремительно пронеслись вниз по долине, уничтожая все на своем пути, и образовали завал, распластавшись на всей Кармадонской котловине перед грядой Скалистого хребта. Виновником катастрофы стал пульсирующий ледник Колка, подвижки которого неоднократно происходили и в прошлом.

У ледника Колка, как и у многих других пульсирующих ледников, затруднен сток льда. В течение многих лет лед накапливается перед препятствием, наращивает массу до определенного критического объема и, когда тормозящие силы не могут противостоять сдвигающим, происходит резкая разрядка напряжения, ледник наступает. В прошлом подвижки ледника Колка происходили около 1835-го, в 1902 и 1969 годах. Они возникали, когда на леднике наращивалась масса в 1—1,3 млн. тонн. Геналдонская катастрофа 1902 гида произошла 3 июля, в разгар жаркого лета. Температура воздуха в этот период превышала норму на 2,7°, прошли сильные ливни. Превратившись в пульпу из льда, воды и морены, ледяной выброс преобразовался в сокрушительный скоростной сель, промчавшийся в считанные минуты. Подвижка 1969 года развивалась постепенно, достигнув наибольшего развития в зимнее время, когда количество талой воды в бассейне было минимальным. Это и определило относительно спокойный ход событий. В 2002 году в леднике накопилось огромное количество воды, ставшей спусковым механизмом подвижки. Очевидно, вода «оторвала» ледник от ложа и сформировался мощный водно-ледово-каменный сель. То, что подвижка была спровоцирована раньше времени и достигла колоссального масштаба, было обусловлено сложившимся комплексом факторов: неустойчивым динамическим состоянием ледника, уже накопившего массу, близкую к критической; мощным скоплением воды в леднике и под ледником; обвалами льда и горной породы, создавшими перегрузку в тыловой части ледника.

Мир без ледников

Общий объем льда на Земле составляет почти 26 млн. км3, или около 2% всей земной воды. Эта масса льда равна стоку всех рек земного шара за 700 лет.

Если существующий лед равномерно распределить по поверхности нашей планеты, он покроет ее слоем толщиной 53 м. А если бы этот лед внезапно растаял, то уровень Мирового океана повысился бы на 64 м. При этом оказались бы затопленными густонаселенные плодородные прибрежные равнины на площади около 15 млн. км22 . Такое внезапное таяние произойти не может, но на протяжении геологических эпох, когда ледниковые покровы возникали, а затем постепенно стаивали, колебания уровня моря были еще большими.

Древние оледенения…

Идеи о древних оледенениях гор были высказаны еще в конце XVIII века, а о прошлом оледенении равнин умеренных широт — в первой половине XIX века. Теория древнего оледенения не сразу завоевала признание среди ученых. Еще в начале XIX века во многих местах земного шара находили штрихованные валуны горных пород явно не местного происхождения, но что их могло принести, ученые не знали. В

1830 году английский исследователь Ч. Лайель выступил со своей теорией, в которой и разнос валунов, и штриховку скал приписывал действию плавучих морских льдов. Гипотеза Лайеля встретила серьезные возражения. Во время своего знаменитого путешествия на корабле «Бигль» (1831—1835 годы) Ч.Дарвин некоторое время прожил на Огненной Земле, где воочию увидел ледники и порождаемые ими айсберги. Впоследствии он писал, что валуны по морю могут разноситься айсбергами, особенно в периоды более широкого развитии ледников. А после своего путешествия в Альпы в 1857 году и сам Лайель усомнился в правильности своей теории. В 1837 году швейцарский исследователь Л. Агассис впервые объяснил воздействием ледников и полировку скал, и перенос валунов, и отложение морены. Значительный вклад в становление ледниковой теории внесли русские ученые, и прежде всего П.А. Кропоткин. Путешествуя в 1866-м по Сибири, он обнаружил на Па-томском нагорье множество валунов, ледниковых наносов, гладких отполированных скал и связал эти находки с деятельностью древних ледников. В 1871 году Русское географическое общество командировало его в Финляндию — страну с яркими следами недавно отступивших отсюда ледников. Эта поездка окончательно оформила его взгляды. Изучая древние геологические отложения, мы нередко находим тиллиты — грубообломочные окаменевшие морены и ледниково-морские осадки. Они обнаружены на всех континентах в отложениях разного возраста, и по ним восстанавливается ледниковая история Земли за 2,5 млрд. лет, в течение которых планета пережила 4 ледниковые эры, длившиеся от многих десятков до 200 млн. лет. Каждаи такая эра состояла из ледниковых периодов, соизмеримых по длительности с плейстоценом, или четвертичным периодом, а каждый период — из большого числа ледниковых эпох.

Продолжительность ледниковых эр на Земле составляет не менее трети всего времени ее эволюции за последние 2,5 млрд, лет. А если учесть длительные начальные фазы зарождения оледенения и его постепенной деградации, то эпохи оледенения займут почти столько же времени, сколько и теплые, безледные, условия. Последний из ледниковых периодов начался почти миллион лет назад, в четвертичное время, и ознаменовался обширным распространением ледников — Великим оледенением Земли. Под мощными покровами льда оказались северная часть Северо-Американского континента, значительная часть Европы, а возможно, также и Сибирь. В Южном полушарии подо льдом, как и сейчас, находился весь Антарктический материк. В период максимального распространения четвертичного оледенения ледники покрывали свыше 40 млн. км2 — около четверти всей поверхности материков. Крупнейшим в Северном полушарии был Североамериканский ледниковый щит, достигавший в толщину 3,5 км. Под ледниковым покровом толщиной до 2,5 км оказалась вся северная Европа. Достигнув наибольшего развития 250 тыс. лет назад, четвертичные ледники Северного полушария стали постепенно сокращаться. Оледенение не было непрерывным на протяжении всего четвертичного периода. Существуют геологичоские, палеоботанические и другие доказательства того, что за это время ледники по крайней мере трижды совершенно исчезали, сменяясь эпохами межледниковья, когда климат был теплее современного. Однако на смену этим теплым эпохам приходили похолодания, и ледники распространялись вновь. Сейчас мы живем, по-видимому, в конце четвертой эпохи четвертичного оледенения. Совсем не так, как в Северном полушарии, развивалось четвертичное оледенение Антарктиды. Оно возникло за много миллионов лет до того времени, как появились ледники в Северной Америке и Европе. Помимо климатических условий этому способствовал издавна существовавший здесь высокий материк. В отличие от древних ледниковых покровов Северного полушария, которые то исчезали, то возникали вновь, Антарктический ледниковый покров мало изменялся в своих размерах. Максимальное оледенение Антарктиды было больше современного всего в полтора раза по объему и ненамного больше по площади.

Всемирный потоп – причина для ледникового периода

Чтобы на суше стали накапливаться массы льда, океаны в умеренных и полярных широтах должны быть намного теплее земной поверхности – особенно летом . С поверхности теплых океанов испаряется большое количество воды, которая затем перемещается в сторону суши. На холодных континентах большая часть осадков выпадает в виде снега, а не дождя; летом этот снег подтаивает. Таким образом быстро накапливается лед. Эволюционные модели, объясняющие ледниковый период «медленными и постепенными» процессами, несостоятельны. Теории долгих эпох говорят о постепенном по холодании на Земле.

Но такое похолодание вовсе не привело бы к ледниковому периоду. Если бы океаны постепенно охлаждались одновременно с сушей, то через некоторое время похолодало бы настолько, что снег перестал бы таять летом, и испарение воды с поверхности океана не могло бы обеспечить достаточно снега для образования массивных ледовых щитов. Результатом всего этого стал бы не ледниковый период, а образова ние снежной (полярной) пустыни.

А вот Всемирный Потоп, описанный в Библии, обеспечил очень простой механизм ледникового периода. К концу этой глобальной катастрофы, когда в допотопные океаны влились горячие подземные воды, а также в результате вулканической деятельности в воду выделилось большое количество тепло вой энергии, океаны, скорее всего, были теплыми. Орд и Вардиман доказывают, что непосредственно перед началом ледникового периода воды океанов действительно были теплее: об этом свидетельствуют изотопы кислорода в раковинах крошечных морских животных – фораминифер.

Вулканическая пыль и аэрозоли, ока завшиеся в воздухе вследствие остаточных вулканических явлений в конце Потопа и после него, отражали солнечную радиацию обратно в космос, вызывая на Земле общее, в особенности летнее, похолодание.

Пыль и аэрозоли постепенно уходили из атмосферы, но продолжавшаяся после Потопа вулканическая деятельность пополняла их запасы еще сотни лет. Доказательством про должительного и широко распространенного вулканизма является большое количество вулканических пород среди так называемых плейстоценовых осадков, которые, вероятно, сформировались вскоре после Потопа. Вардиман, пользуясь общеизвестной информацией о движении воздушных масс, показал, что теплые послепотопные океаны в сочетании с похолоданием на полюсах явились причиной сильных конвекционных по токов в атмосфере, породивших зону грандиозного урагана над большей частью Арктики. Она сохранялась более пятисот лет, вплоть до ледникового максимума (см. следующий раздел).

Такой климат приводил к выпадению в полярных широтах большого количества снежных масс, которые быстро оледеневали и образовывали ледовые щиты. Эти щиты сначала покрыли сушу, а затем, ближе к концу ледникового периода, по мере по холодания воды, стали распространяться на океаны.

Как начинаются ледниковые периоды

Теорий того, почему начинаются ледниковые периоды, много, но одна из них имеет больше сторонников, чем остальные. Она связывает глобальные климатические изменения с местными изменениями ландшафта.

Наша планета нагревается Солнцем очень неравномерно из-за того, что имеет форму шара, а не диска, как утверждают многие (Николай Хижняк приводил доказательства этого). В результате этого возникает разница температур в разных частях планеты. Из-за этого воздушные и водные массы начинают перемещаться между экватором и плюсами.

Если бы на Земле не было материков, как рассказывала Дарья Елецкая в своей статье, это происходило бы очень легко. С появлением материков, циркуляция воздуха и воды была нарушена. Например, одной из причин начала ледниковых периодов называют формирование Гималаев, которые замедлили перемещение воздушных масс от экватора к северному полюсу.

Другой ледниковый период начался после “зарастания” Панамского перешейка между Северной и Южной Америкой. В результате этого нарушилось перемещение воды между Тихим и Атлантическим океанами.

В итоге, между экватором и полюсами, особенно северным накапливается разница температур. Из-за нарастания льда, эта разница становится еще больше. Лед мешает прогреваться полюсам. В итоге это запускает долгий процесс изменения климата.

История создания

Создание

Гипсовая скульптура головы Диего.

Создатели мультфильма не хотели слишком отрываться от реальности. Поэтому они обратились в Американский музей естественной истории. Они часами изучали в его залах кости мамонтов, копались в сотнях книгах и консультировались у ведущих палеонтологов и археологов.

Аппаратура

Во время съёмок у Blue Sky Studios имелось программное обеспечение Ray Tracing, позволяющее создавать множество цветов и их оттенков. Использовались системы частичного набора, позволяющие передавать объёмность меха, атмосферных явлений и пейзажей; а также различные другие приёмы, с помощью которых показывались, к примеру, подъём воды или пурга.

Скрат

Во время создания мультфильма создатели сначала включили крысобела Скрата в тестовые показы, где он не играл важной роли. Однако после них зрители выделяли Скрата в качестве наиболее понравившегося персонажа

В итоге создатели решили включить его в некоторые сцены мультфильма.

Можно ли отсрочить ледниковый период

Прошлый ледниковый период продлился около 100 тысяч лет. Межледниковый до этого длился около 125 тысяч лет. Такие цифры не дают возможность точно спрогнозировать дату начала следующего ледникового периода. Одно ясно точно — он будет! Но скорее всего, это будет относительно нескоро и пока закупаться гречкой не стоит.

Было время, когда Земля была покрыта льдом чуть ли не полностью.

С учетом развития современного общества, мы даже немного тормозим наступление нового ледникового периода тем, что усердно прогреваем зоны рядом с полюсами. Тем самым мы немного компенсируем неоднородность температуры на Земле. А еще мы строим каналы, которые изменяют баланс водного обмена между океанами. Конечно, этого недостаточно для полной отмены нового похолодания, но небольшую отсрочку мы даем себе сами.

Есть и то, что неподвластно нашей воле. Например, движения тектонических плит. Они в любой момент могут переместиться и это окажет на климат дополнительное влияние. С другой стороны это будет уже глобальной катастрофой и изменения климата будут волновать нас меньше всего. Другие катастрофы, например, падение метеорита, извержение супер-вулкана или атомная война, тоже могут изменить климат на нашей планете. В каждом из этих случаев в атмосферу выбросится много пыли и пепла, которые перекроют доступ солнечных лучей. За несколько лет это сможет сильно изменить распределение тепла на планете.

В завершение можно сказать, что несмотря на все наши технологии и умение строить отличные дома, нам будет очень сложно пережить ледниковый период, если он вдруг резко наступит. Из-за постоянного изменения толщины ледяного покрова, мы не сможем построить ничего нового. А существующие города будут разрушены километровыми массами льда, которые при этом будут перемещаться и просто сметут все, что ближе к полюсам.

Выжить в более теплых районах будет можно, но на Земле слишком много людей, чтобы сделать это с комфортом. В итоге жизнь превратится в выживание. Мрачный прогноз! Но бояться этого не стоит, ведь вероятность его наступления “одним днем” ничтожно мала. Так что пока живем.

Полнометражные мультфильмы

Ледниковый Период (2002)

Мультфильм был создан в 2002 году режиссёрами Крисом Уэджом и Карлусом Салданьей.

Дата выхода в США — 15 марта 2002 года. Это был первый мультфильм из предстоящей серии фильмов «Ледниковый период», первоначально не планировавшейся как франшиза. Сюжет фильма рассказывает о мамонте по имени Мэнни, который считает себя последним выжившим мамонтом на Земле.

20 000 лет до н.э. начинается ледниковый период. Чтобы избежать приближающегося холода, животные мигрируют на юг. Однако некоторые из них все-таки решают остаться — одинокий, угрюмый мамонт Манфред, а также бесшабашный ленивец Сид. Случайно эта парочка наталкивается на человеческого детеныша. Они решают вернуть его людям и отправляются в путешествие. По пути они встречают хитрого саблезубого тигра Диего, который вызывается идти вместе с ними. Но никто из героев не мог себе представить, какие приключения и передряги ждут их на пути к колонии людей.

  • Бюджет: $59 000 000.
  • Кассовые сборы: $383 257 136.

Ледниковый Период 2: Глобальное Потепление (2006)

Следующая часть франшизы о приключениях животных во времена ледникового периода. После съемок первого фильма режиссёр Крис Уэдж покинул проект, и режиссёрское кресло в сиквеле единолично занял Карлус Салданья.

Дата выхода в США — 1 марта 2006 года. В России мультфильм показывался с 30 марта.

По сюжету фильма, саблезубый тигр Диего, мамонт Манфред, грызун Скрэт и ленивец Сид дожили до глобального потепления. Стремительный паводок идет прямиком к их родной долине и готовится на долгие годы затопить все окрестности. Теперь ответственным животным придется спасать соседей от потопа, что довольно проблематично — строить ковчег совершенно не из чего, кроме как из талого снега. Поэтому герои решаются на эвакуацию. Переселение разнообразной живности в сухое место пройдет не менее суетливо, смешно и успешно, чем и прошлая операция по возвращению детеныша в человеческую семью.

  • Бюджет: $80 000 000.
  • Кассовые сборы: $660 940 780.

Ледниковый Период 3: Эра Динозавров (2009)

Третья часть грандиозной кинофраншизы «Ледниковый период», режиссёром которой снова стал Карлус Салданья.

Дата выхода в США — 1 июля 2009 года. В России мультфильм вышел в один день с мировой премьерой. Это первый мультфильм из всей франшизы, который транслировался в кинотеатрах в 3D-формате.

К событиям «Ледникового периода 3» жизнь главных героев мультфильма потерпела некоторые изменения. Мамонты Манфред и Элли ожидают появление на свет своего детёныша; саблезубый тигр Диего впал в раздумье о том, не стал ли он слишком «мягкотелым» в компании своих друзей; ленивец Сид, бредя желанием создать собственное племя, решился украсть несколько яиц динозавра. Отправившись спасать Сида, друзья попадают в таинственный растительный мир, скрытый под толщами льда, где они сталкиваются с динозаврами и агрессивной окружающей средой, а также знакомятся с охотником на динозавров — лаской по имени Бак.
Крысобелка Скрэт (который вновь случайным образом стал виной глобальной проблемы, открыв путь в мир динозавров) по-прежнему гоняется за своим орехом, но на этот раз у него появился конкурент — крысобелка Скрэтти. Но во время одержимой борьбы за орех эти двое влюбляются друг в друга.

  • Бюджет: $90 000 000.
  • Кассовые сборы: $886 686 817.

Ледниковый Период 4: Континентальный Дрейф (2012)

Четвёртый мультфильм о приключениях мамонта Мэнни и его друзей. Карлус Салданья покинул режиссёрское кресло, но остался во франшизе на правах продюсера. Новыми режиссёрами стали Стив Мартино и Майк Тёрмайер, которые уже участвовали в предыдущих фильмах в качестве сценаристов.

Мировая премьера мультфильма состоялась 26 июня 2012 года в Буэнос-Айресе, Аргентина. Дата выхода в США и Великобритании — 13 июля 2012 года. В России фильм вышел на день раньше, 12 июля.

После приключений под землей прошло семь лет. Случился дрейф континентов. Главные герои мультфильма, отделённые от стада, вынуждены использовать айсберг в качестве плота. Они пересекают океан и попадают в неизвестные им ранее земли с экзотическими животными и пиратами, враждебно настроенными к ним. Скрэту удаётся получить свой жёлудь, но он перемещается в новые для него земли.

  • Бюджет: $95 000 000.
  • Кассовые сборы: $877 244 782.

Ледниковый Период 5: Столкновение Неизбежно (2016)

20 декабря 2013 года кинокомпании 20th Century Fox и Blue Sky Studios объявили о начале производства пятого фильма франшизы, мировая премьера которого назначена на 14 июля 2016 года. В июле 2015 года на выставке Licensing Expo появился постер с названием мультфильма — Ice Age 5: Collision Course.

  • Бюджет: $105 000 000.
  • Кассовые сборы: $408 579 038.

Литература

  • Серебрянный Л. Р. Древнее оледенение и жизнь. — М.: Наука, 1980. — 128 с. — (Человек и окружающая среда). — 100 000 экз.
  • Зимы нашей планеты: Земля подо льдом / Авторы: Б. Джон, Э. Дербишир, Г. Янг, Р. Фейрбридж, Дж. Эндрюс; Под ред. Б. Джона; Пер. с англ. д-ра геогр. наук Л. Р. Серебрянного. — М.: Мир, 1982. — 336 с. — 50 000 экз.
  • Глобальные изменения природной среды / Под ред. Н. С. Касимова. — М.: Научный мир, 2000.
  • Изменение климата и ландшафтов за последние 65 миллионов лет (кайнозой: от палеоцена до голоцена) / Под ред. А. А. Величко. — М.: ГЕОС, 1999.
  • Короновский Н.В., Хаин В.Е., Ясаманов Н.А. Историческая геология. — М.: Академия, 2006.
  • Крапивнер Р. Б. Кризис ледниковой теории: Аргументы и факты. — М.: ГЕОС, 2018. — 320 с. — 300 экз.

“Ледниковый период 2: Глобальное потепление”(2006)

Доисторическим зверям снова грозит смерть – на этот раз от жары и затопления их долины. Мэнни, Сид и тигр Диего отправляются в безопасное место. В пути они встречают множество других животных, в том числе и мамонтиху Элли, которая считает себя опоссумом. Радости Мэнфрида нет предела – он не единственный на планете. Но взаимоотношения с новой знакомой будут складываться с большим трудом. Вскоре кочевники добрались до джунглей, где Сида хотели принести в жертву другие ленивцы. Льды стремительно тают, и пересечь опасные участки становится проблематично. Друзей ожидают еще более опасные и увлекательные приключения.

Особенности шестого континента

Антарктида — самый высокий континент планеты, средняя высота которого равна 2 350 м (средняя высота Европы 340 м, Азии — 960 м). Эта высотная аномалия объясняется тем, что большая часть массы материка сложена льдом, который почти втрое легче каменных пород. Когда-то он был свободен ото льда и ненамного отличался по высоте от других континентов, но постепенно мощный ледяной панцирь покрыл весь материк, а земная кора стала прогибаться под колоссальной нагрузкой. За прошедшие миллионы лет эта избыточная нагрузка, «изостатически компенсировалась», иначе говоря, земная кора прогнулась, но следы ее до сих пор отражены в рельефе Земли. Океанографические исследования прибрежных антарктических вод показали, что материковая отмель (шельф), которая окаймляет все материки мелководной полосой с глубинами не более 200 м, у берегов Антарктиды оказалась на 200—300 м глубже. Причиной этому служит опускание земной коры под тяжестью льда, ранее покрывавшего материковую отмель толщиной 600— 700 м. Сравнительно недавно лед отсюда отступил, но земная кора еще не успела «разогнуться» и, кроме того, она удерживается льдом, лежащим южнее. Неограниченному распространению Антарктического ледникового покрова всегда мешало море.

Всякое расширение ледников за пределы суши возможно лишь при услоиии, что море у берега не глубокое, иначе морские течения и волнения рано или поздно разрушат выдвинувшийся далеко в море лед. Поэтому граница максимального оледенения проходила по внешнему краю материковой отмели. На антарктическое оледенение в целом большое влияние оказывает изменение уровня моря. При понижении уровня Мирового океана ледниковый покров шестого континента начинает наступать, при повышении происходит его отступание. Известно, что за последние 100 лет уровень моря вырос на 18 см, продолжает расти и сейчас. Видимо, с этим процессом связано разрушение некоторых антарктических шельфових ледников, сопровождающееся отколом огромных столовых айсбергов длиной до 150 км. Вместе с тем есть все основания полагать, что масса антарктического оледенения в современную эпоху увеличивается, и это тоже может быть связано с происходящим глобальным потеплением. Действительно, потепление климата вызывает активизацию атмосферной циркуляции и усиление межширотного обмена воздушных масс. На Антарктический материк поступает более теплый и влажный воздух. Однако повышение температуры на несколько градусов не вызывает никакого таяния внутри материка, где сейчас стоят морозы в 40—60°С, в то время как увеличение количества влаги приводит к более обильным снегопадам. Значит, потепление вызывает увеличение питания и рост оледенения Антарктиды.

Образование горных ледников

По мере подъема в горы воздух становится все холоднее. На некоторой высоте зимний снег не успевает стаять за лето; из года в год он накапливается и дает начало ледникам. Ледник — это масса многолетнего льда преимущественно атмосферного происхождения, которая движется под действием силы тяжести и принимает форму потока, купола или плавучей плиты (если речь идет о покровных и шельфовых ледниках).

В верхней части ледника находится область аккумуляции, где идет накопление осадков, которые постепенно преобразуются в лед. Постоянное пополнение запасов снега, его уплотнение, перекристаллизация приводят к тому, что он превращается в крупнозернистую массу ледяных зерен — фирн, а затем под давлением выше лежащих слоев — в массивный глетчерный лед.

Из области аккумуляции лед перетекает в нижнюю часть — так называемую область абляции, где он расходуется преимущественно путем таяния. Верхняя часть горного ледника обычно представляет собой фирновый бассейн. Он занимает кар (или цирк — расширенное верховье долины) и имеет вогнутую поверхность. При выходе из цирка ледник нередко пересекает высокую устьевую ступень — ригель; здесь лед рассекают глубокие поперечные трещины и возникает ледопад. Дальше ледник сравнительно узким языком спускается вниз по долине. Жизнь ледника во многом определяется балансом его массы. При положительном балансе, когда приход вещества на леднике превышает его расход, масса льда увеличивается, ледник становится более активным, продвигается вперед, захватывает новые площади. При отрицательном — становится пассивным, отступает, освобождая из-подо льда долину и склоны.

Растения ледникового периода

Оказывается, все что хотели. В те времена было много растений, которые могли пережить ледниковый период. Даже в самые холодные времена оставались степи-луговые и древесно-кустарниковые участки, которые позволили мамонтам и другим травоядным животным не помереть с голодухи. Эти пастбища были полны видов растений, которые отлично растут в холодную сухую погоду — например, ели и сосны. В более теплых областях в изобилии были березы и ивы. В целом климат в то время был очень похож на сибирский. Хотя растения, скорее всего, серьезно отличались от своих современных коллег.

Все вышесказанное не означает, что ледниковые периоды не уничтожили часть растительности. Если растение не смогло адаптироваться к климату, ему оставалось лишь мигрировать через семена либо исчезнуть. В Австралии когда-то были самые длинные списки разнообразных растений, пока ледники не уничтожили добрую их часть.

Комментировать
0