СОДЕРЖАНИЕ
0
03 января 2021

Как работает радиолокатор

Локацией называют способ (или процесс) определения месторасположения чего-либо. Соответственно, радиолокация – это метод обнаружения предмета или объекта в пространстве при помощи радиоволн, которые излучает и принимает устройство под название радиолокатор или РЛС.

Физический принцип работы первичного или пассивного радара довольно прост: он передает в пространство радиоволны, которые отражаются от окружающих предметов и возвращаются к нему в виде отраженных сигналов. Анализируя их, радар способен обнаружить объект в определенной точке пространства, а также показать его основные характеристики: скорость, высоту, размер. Любая РЛС – это сложное радиотехническое устройство, состоящее из многих компонентов.

В состав любого радара входит три основных элемента: передатчик сигнала, антенна и приёмник. Все радиолокационные станции можно разделить на две большие группы:

  • импульсные;
  • непрерывного действия.

Передатчик импульсной РЛС испускает электромагнитные волны в течение краткого промежутка времени (доли секунды), следующий сигнал посылается только после того, как первый импульс вернется обратно и попадет в приемник. Частота повторения импульса – одна из важнейших характеристик РЛС. Радиолокаторы низкой частоты посылают несколько сотен импульсов в минуту.

https://youtube.com/watch?v=EzWo_k1MDuc

Импульсные РЛС имеют как недостатки, так и преимущества. Они могут определять дальность сразу нескольких целей, подобный радар вполне может обходиться одной антенной, индикаторы подобных устройств отличаются простотой. Однако при этом сигнал, испускаемый подобным РЛС должен иметь довольно большую мощность. Также можно добавить, что все современные радары сопровождения выполнены по импульсной схеме.

Антенна РЛС фокусирует электромагнитный сигнал и направляет его, улавливает отраженный импульс и передает его в приемник. Существуют радиолокаторы, в которых прием и передача сигнала производятся разными антеннами, причем они могут находиться друг от друга на значительном расстоянии. Антенна РЛС способна испускать электромагнитные волны по кругу или работать в определенном секторе. Луч радара может быть направлен по спирали или иметь форму конуса. Если нужно, РЛС может следить за движущейся целью, постоянно направляя на нее антенну с помощью специальных систем.

В функции приемника входит обработка полученной информации и передача ее на экран, с которого она считывается оператором.

Кроме импульсных РЛС, существуют и радары непрерывного действия, которые постоянно испускают электромагнитные волны. Такие радиолокационные станции в своей работе используют эффект Доплера. Он заключается в том, что частота электромагнитной волны, отраженной от объекта, который приближается к источнику сигнала, будет выше, чем от удаляющегося объекта. При этом частота испускаемого импульса остается неизменной. Радиолокаторы подобного типа не фиксируют неподвижные объекты, их приемник улавливает лишь волны с частотой выше или ниже испускаемой.

Основной проблемой радаров непрерывного действия является невозможность с их помощью определять расстояние до объекта, зато при их работе не возникает помех от неподвижных предметов между РЛС и целью или за ней. Кроме того, доплеровские радары – это довольно простые устройства, которым для работы достаточно сигналов малой мощности. Также нужно отметить, что современные радиолокационные станции с непрерывным излучением имеют возможность определять расстояние до объекта. Для этого используется изменение частоты РЛС во время работы.

Одной из главных проблем в работе импульсных РЛС являются помехи, которые идут от неподвижных объектов — как правило, это земная поверхность, горы, холмы. При работе бортовых импульсных радаров самолетов все объекты, находящиеся ниже, «затеняются» сигналом, отраженным от земной поверхности. Если говорить о наземных или судовых радиолокационных комплексах, то для них эта проблема проявляется в обнаружении целей, летящих на малых высотах. Чтобы устранить подобные помехи используется все тот же эффект Доплера.

Также радиолокационные станции можно разделить по длине и частоте волны, на которой они работают. Например, для исследования поверхности Земли, а также для работы на значительных дистанциях используются волны 0,9—6 м (частота 50—330 МГц) и 0,3—1 м (частота 300—1000 МГц). Для управления воздушным движением применяется РЛС с длиной волны 7,5—15 см, а загоризонтные радары станций обнаружения ракетных пусков работают на волнах с длиной от 10 до 100 метров.

На стадии перевооружения

Все современные РЛС состоят из шести основных компонентов: передатчик (источник электромагнитного сигнала), антенная система (фокусировка сигнала передатчика), радиоприёмник (обработка принятого сигнала), выходные устройства (индикаторы и ЭВМ), аппаратура помехозащиты и источники электропитания.

Также по теме


«Не имеют себе равных»: как Россия создаёт уникальные средства противовоздушной обороны

В России во вторник отмечали День войсковой противовоздушной обороны. Контроль над небом — одна из наиболее актуальных задач для…

Отечественные РЛС могут засекать самолёты, беспилотники и ракеты, отслеживая их передвижение в режиме реального времени. Радары обеспечивают своевременное поступление информации о ситуации в воздушном пространстве вблизи рубежей РФ и за сотни километров от госграниц. На военном языке это называется радиолокационной разведкой.

Стимулом для совершенствования радиолокационной разведки РФ являются усилия иностранных государств (прежде всего США) по созданию малозаметных самолётов, крылатых и баллистических ракет. Так, на протяжении последних 40 лет Соединённые Штаты активно развивают стелс-технологии, которые призваны обеспечить незаметный для РЛС подлёт к рубежам противника.

Огромный военный бюджет (свыше $600 млрд) даёт возможность американским конструкторам экспериментировать с радиопоглощающими материалами и геометрическими формами летательных аппаратов. Параллельно с этим США совершенствуют средства радиолокационной защиты (обеспечение помехозащищённости) и аппараты радиолокационного подавления (создание помех для приёмников РЛС).

Военный эксперт Юрий Кнутов убеждён, что радиолокационная разведка РФ способна обнаруживать практически все виды воздушных целей, включая американские истребители пятого поколения F-22 и F-35, самолёты-невидимки (в частности, стратегический бомбардировщик B-2 Spirit) и объекты, летящие на предельно малых высотах.

  • Экран РЛС, который показывает изображение цели, синхронизированное с движением антенны

Эксперт отметил, что США не прекращают работы по развитию систем радиолокационного подавления, осознавая уязвимое положение перед российскими радарами. Кроме того, на вооружении американской армии стоят специальные противорадиолокационные ракеты, которые наводятся по излучению станций.

«Новейшие российские РЛС отличает невероятный уровень автоматизации по сравнению с предыдущим поколением. Поразительный прогресс был достигнут в улучшении мобильности. В советские годы на то, чтобы развернуть и свернуть станцию, требовались чуть ли не сутки. Сейчас это делается в пределах получаса, а иногда и в течение нескольких минут», — рассказал Кнутов.

Собеседник RT полагает, что радиолокационные комплексы ВКС приспособлены к противодействию высокотехнологичному противнику, снижая вероятность его проникновения в воздушное пространство РФ. По словам Кнутова, сегодня радиотехнические войска России находятся на стадии активного перевооружения, но к 2020 году современными РЛС будет укомплектовано большинство частей. 

Состав комплекса обнаружения на примере РЛС «Радескан»

В состав гражданского РЛС могут входить следующие компоненты:

  • Приемо-передающая антенна. Если устройство моноблочное или генератор радиоволн (внешний модуль) и антенны приемника, если функции установки разнесены на несколько устройств.
  • Кабель для подачи питания на внешний модуль.
  • Приемно-контрольное устройство, принимающее аналоговые данные от антенны, инвертирующее его в цифровой формат и передающие на сервер.
  • Сервер с установленным программным обеспечением.
  • ПК — рабочее место оператора с доступом к ПО на сервере.

Установка внешнего модуля (передающей и принимающей антенны) должна осуществляться в центре контролируемого участка на высоте 1-30м. Желательно, чтобы периметр находился в пределах прямой видимости, в этом случае будет достигнута оптимальная интенсивность сигнала.

Для оптимизации начальных затрат сервер может комплектоваться платами видеозахвата и дополнительно выполнять функцию видеорегистратора. Программное обеспечение, изначально, адаптировано для совместного использования с системами видеонаблюдения.

Дополнительные функции программного обеспечения на примере АРМ КОРТ для Радескан

ПО радиолокационных устройств обнаружения для использования в качестве полноценной системы безопасности контроля периметра и внутренней площади объекта. Программа оператора (диспетчера) может выполнять следующие функции:

  • Непрерывное ведение журнала с выделением всех тревожных ситуации в отдельный Лог файл. Существует возможность фиксации параметров обнаруженного нарушителя: скорости и траектории движения, сохранение видеороликов и снимков тепловизионной камеры.
  • Контролируется и фиксируется реакция оператора на тревожное событие. После подачи тревожного сигнала оператор должен записать соответствующий текстовый комментарий.
  • Тревожные журналы и все базы данных хранятся в виде БД Access с защитой в виде пароля.
  • Отдельный модуль дает возможность ручного управления поворотными устройствами камер видеонаблюдения. Кроме того, реализовано автоматическое слежение, захват цели, патрулирование средствами ptz камер.

В учетной записи администратора реализованы следующие возможности:

  • изменение рабочей частоты РЛС из имеющегося предустановленного списка;
  • настройка чувствительности обнаружения;
  • просмотр истории сервисных сообщений и служебных файлов логирования;
  • разграничение и изменение прав доступа оператора к основным функциям ПО.

Принцип действия

Радиолокация основана на следующих физических явлениях:

  • Радиоволны рассеиваются на встретившихся на пути их распространения электрических неоднородностях (объектами с другими электрическими свойствами, отличными от свойств среды распространения). При этом отражённая волна, также, как и собственно, излучение цели, позволяет обнаружить цель.
  • На больших расстояниях от источника излучения можно считать, что радиоволны распространяются прямолинейно и с постоянной скоростью, благодаря чему имеется возможность измерять дальность и угловые координаты цели (Отклонения от этих правил, справедливых только в первом приближении, изучает специальная отрасль радиотехники — Распространение радиоволн. В радиолокации эти отклонения приводят к ошибкам измерения).
  • Частота принятого сигнала отличается от частоты излучаемых колебаний при взаимном перемещении точек приёма и излучения (эффект Доплера), что позволяет измерять радиальные скорости движения цели относительно РЛС.
  • Пассивная радиолокация использует излучение электромагнитных волн наблюдаемыми объектами, это может быть тепловое излучение, свойственное всем объектам, активное излучение, создаваемое техническими средствами объекта, или побочное излучение, создаваемое любыми объектами с работающими электрическими устройствами.

Первые эксперименты: радиоволны в открытом море

Термин «радиолокация» происходит от двух латинских слов: «radiare», которое означает «излучать», и «locatio» – «размещение, расположение». Сложение этих двух слов позволяет трактовать, что радиолокация занимается определением местоположения различных объектов по излученным от них сигналам.

Это самое общее толкование слова «радиолокация». Более точной формулировкой будет следующая. Под радиолокацией понимают область радиоэлектроники, которая занимается разработкой методов и технических устройств (систем), предназначенных для обнаружения и определения координат и параметров движения различных объектов с помощью радиоволн.

С помощью радиолокации обеспечивается решение широкого круга задач, связанных с обнаружением воздушных и наземных объектов (целей), навигацией (обеспечением вождения) различных судов (воздушных и морских), с управлением воздушным и морским движением, управлением средствами ПВО, с обеспечением безопасности движения транспортных средств, с предсказанием возникновения погодных явлений, а также с поражением наземных (морских) и воздушных объектов в любое время суток и в любых метеоусловиях. Помимо этого, основываясь на принципах радиолокации, решаются задачи, связанные с диагностикой организма человека. Как видите, спектр задач, решаемых радиолокацией, достаточно широк несмотря на то, что радиолокация сравнительно молодое научное направление.


Самолет дальнего радиолокационного обнаружения и управления А-50У

Первые упоминания о возможности использования радиоволн для обнаружения различных объектов относятся ко второй половине 90-х годов XIX столетия. В частности, годом рождения радиолокации в России считается 1897-й, когда изобретатель радио Александр Степанович Попов, проводя свои эксперименты в открытом море по установлению связи с помощью беспроводного телеграфа, обнаружил эффект отражения радиоволн. Было это так. Летом 1897 года под руководством А.С. Попова в Финском заливе проводились испытания радиоаппаратуры, изобретенного им беспроволочного телеграфа. В испытаниях принимали участие два морских судна – транспорт «Европа» и крейсер «Азия». На данных судах были установлены приемная и передающая аппаратура, и между ними поддерживалась непрерывная радиосвязь.

Неожиданно между кораблями прошел линейный крейсер «Лейтенант Ильин». Связь между кораблями прервалась. Через некоторое время, когда «Лейтенант Ильин» прошел линию, соединяющую корабли, связь возобновилась. Это «затенение» было замечено испытателями, и в отчете А.С. Попова по результатам экспериментов было отмечено, что появление каких-либо препятствий между передающей и приемной позициями может быть обнаружено как ночью, так и в тумане. Так родилась радиолокация.

Режимы работы РЛС

Существует два основных режима функционирования радиолокационных станций и устройств. Первый – сканирование пространства. Он осуществляется по строго заданной системе. При последовательном обзоре перемещение луча радара может носить круговой, спиральный, конический, секторный характер. Например, решетка антенны может медленно поворачиваться по кругу (по азимуту), одновременно сканируя по углу места (наклоняясь вверх и вниз). При параллельном сканировании обзор осуществляется пучком радиолокационных лучей. Каждому соответствует свой приемник, ведется обработка сразу нескольких информационных потоков.

Режим слежения подразумевает постоянную направленность антенны на выбранный объект. Для ее поворота, согласно с траекторией движущейся цели, используются специальные автоматизированные следящие системы.

Расширение возможностей

Как отмечают аналитики, развитие системы загоризонтной радиолокации — часть усилий радиотехнических войск Воздушно-космических сил России в рамках радиолокационной разведки в целом.

Для наращивания возможностей «по контролю использования воздушного пространства» России были созданы и уже применяются новейшие образцы радиолокационного вооружения, в частности комплекс «Наблюдатель ФСР и КВП», сообщил начальник радиотехнических войск Воздушно-космических сил РФ.

«Комплекс автоматических средств наблюдения и обработки информации о воздушной обстановке «Наблюдатель ФСР и КВП» предназначен для контроля использования воздушного пространства, обеспечения полётов воздушных судов и является первой в истории радиотехнических войск системой, в составе которой работают автоматические радиолокационные модули, не требующие участия операторов», — отметил Андрей Кобан.

  • Российские военнослужащие радиотехнических войск на учениях
  • РИА Новости

По словам генерал-майора, «возможности каждого радиолокационного модуля позволяют в автоматическом режиме вести радиолокационную разведку в радиусе до 450 км».

«В состав радиолокационного комплекса может входить до 20 модулей, что позволяет в автоматическом режиме контролировать полёты авиации над территорией площадью до 300 тыс. кв. км. Применение комплекса «Наблюдатель ФСР и КВП» совместно с системой обработки информации «ВКАО-М» позволяет существенно повысить уровень автоматизации процессов контроля воздушного пространства Российской Федерации», — заявил он, добавив, что такие комплексы уже «развёрнуты в границах Центрального промышленного района страны, где интенсивность воздушного движения наиболее высокая».

Кроме того, Кобан сообщил, что «продолжается работа по усилению контроля воздушного пространства в Арктической зоне и на востоке страны».

«В этом регионе несут боевое дежурство подразделения РТВ, оснащённые современными комплексами средств автоматизации «Фундамент-М» и РЛС дежурного и боевого режима, такими как «Небо-М», «Подлёт», «Каста-2-2», «Сопка» и другие», — отметил генерал-майор.

Ранее Минобороны сообщало, что два радиотехнических полка объединения ВВС и ПВО Центрального военного округа получили в этом году модернизированную подвижную радиолокационную станцию П-18РТ «Терек». Как уточняло оборонное ведомство, РЛС «позволяет в автоматическом режиме обнаруживать цель, отслеживать её координаты, а также пеленговать устройства постановки помех, определять их тактико-технические характеристики и выдавать информацию на командный пункт».

Также по теме


Преграда для невидимок: какими возможностями обладает российская РЛС «Прима»

«Рособоронэкспорт» начал продвижение на внешний рынок высокомобильной радиолокационной станции разведки и целеуказания «Прима». По…

В конце 2019 года в радиотехнические войска объединения ВВС и ПВО Восточного военного округа поступила радиолокационная станция 19Ж6П.

«Эта РЛС предназначена для обнаружения, опознавания и сопровождения воздушных целей, в том числе крылатых ракет, при воздействии активных и пассивных помех, а также отражений от земной поверхности и метеообразований», — говорилось в сообщении Минобороны.

Отмечалось также, что в новой станции была в том числе «увеличена дальность обнаружения воздушных объектов, введены новые режимы работы, выполнена автоматизация процессов сопровождения, инициализации и сопровождения целей».

По словам Ивана Коновалова, для создания эшелонированной системы обороны у России имеются все средства и наработки.

Михаил Ходарёнок, в свою очередь, добавил, что в перспективе всеракурсное радиолокационное поле будет обеспечено именно станциями загоризонтного обнаружения.

«Это существенно увеличит возможности радиотехнических войск, в том числе по ведению радиолокационной разведки», — заключил он.

Вторичный радиолокатор

Вторичная радиолокация используется в авиации для опознавания. Основная особенность — использование активного ответчика на самолётах.

Принцип действия вторичного радиолокатора несколько отличается от принципа первичного радиолокатора.
В основе устройства Вторичной радиолокационной станции лежат компоненты: передатчик, антенна, генераторы азимутальных меток, приёмник, сигнальный процессор, индикатор и самолётный ответчик с антенной.

Передатчик служит для формирования импульсов запроса в антенне на частоте 1030 МГц.

Антенна служит для излучения импульсов запроса и приёма отражённого сигнала. По стандартам ICAO для вторичной радиолокации антенна излучает на частоте 1030 МГц и принимает на частоте 1090 МГц.

Генераторы азимутальных меток служат для генерации азимутальных меток (англ. Azimuth Change Pulse, ACP) и метки Севера (англ. Azimuth Reference Pulse, ARP). За один оборот антенны РЛС генерируется 4096 малых азимутальных меток (для старых систем) или 16384 улучшенных малых азимутальных меток (англ. Improved Azimuth Change pulse, IACP — для новых систем), а также одна метка Севера. Метка севера приходит с генератора азимутальных меток при таком положении антенны, когда она направлена на Север, а малые азимутальные метки служат для отсчёта угла разворота антенны.

Приёмник служит для приёма импульсов на частоте 1090 МГц.

Сигнальный процессор служит для обработки принятых сигналов.

Индикатор служит для отображения обработанной информации.

Самолётный ответчик с антенной служит для передачи содержащего дополнительную информацию импульсного радиосигнала обратно в сторону РЛС по запросу.

Принцип действия вторичного радиолокатора заключается в использовании энергии самолётного ответчика для определения положения воздушного судна. РЛС облучает окружающее пространства запросными импульсами P1 и P3, а также импульсом подавления P2 на частоте 1030 МГц. Оборудованные ответчиками воздушные суда, находящиеся в зоне действия луча запроса, при получении запросных импульсов, если действует условие P1,P3>P2, отвечают запросившей РЛС серией кодированных импульсов на частоте 1090 МГц, в которых содержится дополнительная информация о номере борта, высоте и так далее. Ответ самолётного ответчика зависит от режима запроса РЛС, а режим запроса определяется интервалом времени между запросными импульсами P1 и P3, например, в режиме запроса А (mode A) интервал времени между запросными импульсами станции P1 и P3 равен 8 микросекундам и при получении такого запроса ответчик воздушного судна кодирует в импульсах ответа свой номер борта.

В режиме запроса C (mode C) интервал времени между запросными импульсами станции равен 21 микросекунде и при получении такого запроса ответчик воздушного судна кодирует в импульсах ответа свою высоту.
Также РЛС может посылать запрос в смешанном режиме, например, Режим А, Режим С, Режим А, Режим С.
Азимут воздушного судна определяется углом поворота антенны, который, в свою очередь, определяется путём подсчёта малых азимутальных меток.

Дальность определяется по задержке пришедшего ответа. Если воздушное судно находится в зоне действия боковых лепестков, а не основного луча, или находится сзади антенны, то ответчик воздушного судна при получении запроса от РЛС получит на своём входе условие, что импульсы P1,P3<P2, то есть импульс подавления больше импульсов запроса. В этом случае ответчик запирается и не отвечает на запрос.

Принятый от ответчика сигнал обрабатывается приёмником РЛС, затем поступает на сигнальный процессор, который проводит обработку сигналов и выдачу информации конечному потребителю и (или) на контрольный индикатор.

Плюсы вторичной РЛС:

  • более высокая точность;
  • дополнительная информация о воздушном судне (номер борта, высота);
  • малая по сравнению с первичными РЛС мощность излучения;
  • большая дальность обнаружения.

Радиолокационные экраны.

Для измерений времени, прошедшего от момента посылки РЛС исходного импульса до момента получения отраженного, используется экран телевизионного типа. Радиолокационные экраны нескольких типов показаны на рис. 2. Поперек экрана типа A электронный луч прочерчивает горизонтальную линию развертки. Посылаемый радиолокатором и принятый отраженный сигналы вызывают отклонения электронного луча в вертикальном направлении. Расстояние между этими двумя пиками служит мерой времени, которое сигнал затратил на прохождение расстояния до цели и обратно. На линии развертки может быть нанесена шкала расстояний до цели в метрах или километрах. Разработан трехмерный радиолокационный индикатор, на экране которого отображались дальность до цели, ее азимут и угол возвышения. Этот экран, известный как экран типа G, позднее был приспособлен для использования в системах управления воздушным движением.

В чем разница между первичным и вторичным радиолокаторами?

Сравнительная характеристика первичного

Основной особенностью первичных радиолокационных устройств является то,
что они работают с пассивным эхо-сигналом.
Излученные высокочастотные импульсы отражаются целью и затем принимаются тем же
радиолокационным устройством.
Таким образом, непосредственной причиной возникновения отраженного эхо-сигнала является зондирующий сигнал,
излучаемый радиолокационным устройством.

и вторичного радиолокаторов

Вторичные радиолокационные устройства работают по
иному принципу:
они используют активные ответные сигналы.
Вторичное радиолокационное устройство также излучает зондирующий сигнал, называемый запросным.
Когда этот сигнал достигает цели, он принимается бортовым
активным ответчиком,
в котором выполняется его обработка.
После этого формируется и излучается ответный сигнал на другой частоте, содержащий
ответное сообщение.

Системы обоих типов, в силу различия принципов построения, имеют свои достоинства и недостатки.
Так, первичный радиолокатор обеспечивает достоверную информацию об угловых координатах, высоте и дальности цели.
В то же время вторичный радиолокатор может получать дополнительную информацию, такую как, например,
сигналы опознавания государственной принадлежности и
высота.
Последнее является весьма полезным свойством, поскольку точность измерения высоты бортовыми высотомерами выше,
чем точность наземных высотомеров.

Следует помнить, что вторичная радиолокация требует наличия на борту специального оборудования.
Однако именно благодаря этому появляется возможность существенно уменьшить мощность передатчика при
сохранении такого же значения максимальной дальности действия, что и в случае первичной радиолокации
Это легко поясняется тем, что излучаемая мощность входит в
уравнение радиолокации
совместно с удвоенной дальностью до цели в случае первичной радиолокации и однократной дальностью — в случае вторичной радиолокации:

Рисунок 1. Калибровочные кривые приемников, различные чувствительности первичного (PSR) и вторичного (SSR) радиолокационных приемников

Рисунок 1. Калибровочные кривые приемников, различные чувствительности первичного (PSR) и вторичного (SSR) радиолокационных приемников

В качестве оценочного значения можно принять снижение мощности передатчика в 1000 раз.
Это означает, что в таком случае может быть использован более простой, компактный и дешевый передатчик.
Приемник может обладать худшей чувствительностью, поскольку мощность сигналов активного ответа больше мощности пассивного эхо-сигнала.
Однако по этой же причине возрастает негативное влияние сигналов, принятых по
боковым лепесткам.
По этой причине при построении вторичных радиолокаторов, как правило,
предпринимаются дополнительные меры по
подавлению боковых лепестков.

Поскольку излучение и прием происходит на отличающихся друг от друга частотах, пассивные помехи не возникают,
следовательно отпадает необходимость в системе селекции движущихся целей.
С другой стороны, при подавлении активными помехами изменение частоты невозможно.
Специфические помехи,
имеющие место при использовании вторичных радиолокационных устройств вызывают необходимость дополнительных схемных решений.

Комментировать
0