No Image

Что такое звезда: как образуются и угасают звезды?

СОДЕРЖАНИЕ
0
04 января 2021

Огни Вселенной

Звезда — это огромных размеров газовый шар, излучающий свет и тепло (в этом состоит главное её отличие от планет, которые, будучи абсолютно тёмными телами, способны лишь отражать падающие на них световые лучи). Энергия порождает свет и тепло, возникшая в результате термоядерных реакций, происходящих внутри ядра: в отличие от планет, в состав которых входят как твёрдые, так и лёгкие элементы, небесные светила имеют в своем составе легкие частицы с незначительной примесью твёрдых веществ (например, Солнце почти на 74% состоит из водорода и на 25% – из гелия).

Поскольку вес даже самой маленькой звёздочки значительно превосходит массу самых крупных планет, небесные светила обладают достаточной гравитацией для того, чтобы удерживать вокруг себя все объекты меньших размеров, которые начинают крутиться вокруг них, образуя планетную систему (в нашем случае – Солнечную).

Вспыхивающие светила

Интересно, что в астрономии существует такое понятие, как «новые звёзды» – при этом речь идёт не о появлении новых небесных тел: на протяжении своего существования горячие небесные тела умеренной светимости периодически ярко вспыхивают, причём они настолько сильно начинают выделяться на небосводе, что люди в прежние времена считали, будто это рождаются новые звёзды.

В действительности анализ данных показал, что эти небесные светила существовали и раньше, но из-за вздутия поверхности (газообразной фотосферы) внезапно приобрели особую яркость, увеличив своё свечение в десятки тысяч раз, в результате чего создаётся впечатление, будто на небе появились новые звёзды. Возвращаясь к первоначальному уровню яркости, новые звёзды могут изменять свой блеск до 400 тыс. раз (при этом, если сама вспышка длится лишь несколько дней, их возврат к предыдущему состоянию нередко длится годами).

Основа молодых звёзд

Основным элементом, необходимым для появления новой звезды, является очень большое количество водорода. Кроме того, необходим дейтерий.

Дейтерием называют тяжелый водород, который имеет в составе своего ядра кроме протона ещё один нейтрон – элементарную частицу, не имеющую собственного заряда.

Водород является одним из первых веществ, которые появились после Большого Взрыва. По мнению исследователей именно после Большого Взрыва произошёл процесс конденсации протонов, нейтроном, электронов и иных элементарных частиц из раскалённой до сверхвысоких температур материи.

Замечание 1

Большой взрыв – так называется принятая научным сообществом космологическая теория, которая описывает развитие Вселенной в самом начале ее существования, а точнее, процесс начала расширения Вселенной.

В результате Большого взрыва образовалось гигантское количество молекул водорода, в этот момент температура только появившейся Вселенной немного понизилась. И в результате этого процесса протоны стали объединяться с электронами.

Данная фаза по представлениям специалистов началась довольно быстро, уже через одну секунду после Большого Взрыва, и продолжалась она ещё в течении трех минут. За этот отрезок времени температура Вселенной резко упала.

Замечание 2

Состав молодой Вселенной определяют, как состоящий на 75% из водорода, на 24% из гелия, a также из других элементов, вплоть до бора и антиматерии.

В результате появился строительный материал для звёзд. Но только молекул водорода для них было мало. Что бы появились звёзды, молекулы должны были пройти процесс конденсации. В результате же воздействия гравитационной силы притяжения между молекулами должна была произойти термоядерная реакция.

Отмечается, что сразу же после Большого Взрыва материя во Вселенной распределялась равномерно. И к образованию определённых структур привели квантовые флуктуации, благодаря которым произошли колебания плотности газа, что и дало толчок к формированию в будущем звезд.

Процесс изучения и схема эволюции звезд

Где звезды берут энергию и чем “питается” Солнце?

За счет чего звезды расходуют такие чудовищные количества энергии?  Чем “питается” само Солнце? Не смотря на гигантские размеры звезд, их энергия должна пополняться, ибо «вечного двигателя» в природе не существует.

Какой мощи должна быть эта энергия, что её хватает на миллиарды лет? Хороший вопрос, учитывая, что подсчитано: если бы Солнце состояло из лучшего угля, то, получай оно для этого в достаточном количестве кислород, полностью сгорело бы примерно за 1500 лет.

Некогда существовало мнение, что энергия Солнца поддерживается падением на него метеоритов. Их энергия превращается при падении в теплоту, поддерживающую излучение Солнца. Такой способ питания помог бы Солнцу не больше, чем нам, если бы мы вздумали вскипятить бочку воды, ставя на ее крышку горячие утюги.

Кроме того, метеоритов должно было бы сыпаться на Солнце невероятно много, и они так быстро увеличивали бы массу Солнца, что это было бы заметно.

Может быть, тогда, энергия Солнца пополняется за счет его сжатия, то есть постоянного уменьшения в размерах? Звучит логично, ведь при сжатии, энергия тяготения к центру переходила бы в энергию тепловую. Но и эта теория разбилась о математику.

Было вычислено, что даже если бы Солнце было некогда бесконечно большим, чем сейчас, то и в этом случае его сжатия до современного размера хватило бы на поддержание энергии всего лишь в течение 20 миллионов лет. Между тем доказано, что земная кора существует и освещается Солнцем гораздо дольше – как минимум 4,5 миллиарда лет. Сжатие может иметь и наверное имеет место, но не оно служит главным источником солнечной энергии.

Наше Солнце – громадный ядерный реактор и его топлива хватит ещё на 10 миллиардов лет

Тогда, возможно, недра звезд состоят из радиоактивных элементов, таких, как торий, уран и радий? Распадаясь, эти элементы выделяют теплоту.

Но, если бы Солнце целиком состояло из радия, то оно излучало бы… больше энергии, чем действительное Солнце! Тем более, что при большой начальной расточительности, неизбежной при радиоактивном распаде, интенсивность его излучения спадала бы слишком быстро. Радий не мог бы поддерживать наше Солнце так долго, как это необходимо. Допустить же существование тяжелых, сверх-радиоактивных элементов (неизвестных на Земле), да еще сгустившихся в недрах Солнца, современная физика и теория внутреннего строения звезд не позволяют.

Вас может заинтересовать

  • Как ориентироваться ночью по звездам?
  • Двойные звезды и звезды-дьяволы
  • Список звезд первой величины доступных для наблюдения с Земли
  • Звездные часы: солнечное и среднесолнечное время
  • Самая яркая звезда которую наблюдало человечество

Ответ на этот вопрос дала людям ядерная физика.

Объяснение финальной части эволюции звезд

Для нормальных равновесных звезд описанные процессы эволюции маловероятны. Однако существование белых карликов и нейтронных звезд доказывает реальное существование процессов сжатия звездной материи. Незначительное количество подобных объектов во Вселенной свидетельствует о скоротечности их существования. Финальный этап эволюции звезд можно представить в виде последовательной цепочки двух типов:

  • нормальная звезда — красный гигант – сброс внешних слоев – белый карлик;
  • массивная звезда – красный сверхгигант – взрыв сверхновой – нейтронная звезда или черная дыра – небытие.

Схема эволюции звезд. Варианты продолжения жизни звезд вне главной последовательности.

Объяснить с точки зрения науки происходящие процессы достаточно трудно. Ученые-ядерщики сходятся во мнении, что в случае с финальным этапом эволюции звезд мы имеем дело с усталостью материи. В результате длительного механического, термодинамического воздействия материя меняет свои физические свойства. Усталостью звездной материи, истощенной длительными ядерными реакциями, можно объяснить появление вырожденного электронного газа, его последующую нейтронизацию и аннигиляцию. Если все перечисленные процессы проходят от начала до конца, звездная материя перестает быть физической субстанцией – звезда исчезает в пространстве, не оставляя после себя ничего.

Межзвездные пузыри и газопылевые облака, являющиеся местом рождения звезд, не могут пополняться только за счет исчезнувших и взорвавшихся звезд. Вселенная и галактики находятся в равновесном состоянии. Постоянно происходит потеря массы, плотность межзвездного пространства уменьшается в одной части космического пространства. Следовательно, в другой части Вселенной создаются условия для образования новых звезд. Другими словами, работает схема: если в одном месте убыло определенное количество материи, в другом месте Вселенной такой же объем материи появился в другой форме.

Екатерина Скулкина – стоматолог

Без участия Екатерины Скулкиной невозможно представить шоу Comedy Woman. Сейчас российская киноактриса блистает на телеэкранах, а в конце 90-х её профессиональный путь строился в медицине – Екатерина окончила Йошкар-Олинское медицинское училище по специальности «Лечебное дело» и даже работала операционной медсестрой.

В дальнейшем Екатерина Скулкина поступила в Казанский государственный медицинский университет (КГМУ) на стоматологический факультет и с блеском окончила ординатуру по специальности «Ортопедическая стоматология».

Однако именно в КГМУ началась и отправная точка в карьере актрисы – обучаясь в университете, Екатерина начала играть в лиге КВН за сборную своего университета.

Яркость и светимость

Различаются они и по таким признакам, как блеск, яркость. То, насколько яркой окажется наблюдаемая с поверхности Земли звезда, зависит не только от ее светимости, но и от удаленности от нашей планеты. Учитывая расстояние до Земли, звезды могут обладать совершенно различной яркостью. Этот показатель колеблется от одной десятитысячной блеска Солнца до яркости, сопоставимой более чем с миллионом Солнц.

Большая часть звезд находится на нижнем отрезке этого спектра, являясь тусклыми. Во многих отношениях Солнце является среднестатистической, типичной звездой. Однако, по сравнению с другими, оно обладает гораздо большей яркостью. Большое количество тусклых звезд могут наблюдаться даже невооруженным глазом. Причина, по которой звезды отличаются по яркости, заключается в их массе. Цвет, блеск и изменение яркости во времени определяется количеством вещества.

Сверхновые способны уничтожать целые звездные скопления

Структура звезд Вселенной

Сверхновые обходят нейтронные звезды или черные дыры

Если звезда достигла массы больше восьми солнечных, то обречена погибнуть и стать сверхновой

Важно объяснить детям, что это не просто рождение новой звезды. В предыдущей полностью взрывается ядро, что порождает образование железа

Когда оно появляется, то это означает, что звезда отдала всю энергию (более тяжелые элементы будут ее поглощать). У объекта больше нет возможности поддерживать свою массу, и железное ядро рушится. Проходит всего пара секунд, а ядро резко уменьшается, увеличивая температуру на миллион градусов и больше.

Внешние слои разрушаются вместе с ядром, отскакивают и разлетаются в стороны. Сверхновая – это потрясающее зрелище, так как в этот момент выделяется колоссальное количество энергии. Ее так много, что она способна на недели затмить всю галактику! В среднем такие вспышки происходят раз в 100 лет. Каждый год можно найти 25-50 появившихся сверхновых, но они расположены так далеко, что без телескопа этого не увидишь.

Кто придумал названия созвездий?

Карта астеризма Пояс Ориона

Все мифологические отсылки принадлежат древним грекам. Это была крайне удобная система запоминания, ведь истории помогали легко ориентироваться в небе. Если вы видели астеризм Пояс Ориона, то легко определяли звезды его созвездия. Каждый герой был связан легендой и все понимали, почему Малая и Большая Медведица располагаются рядом.

Звезды Ориона, запечатленные в октябре 2010 года. Здесь отметились также туманности Молекулярного облака Ориона, красный сверхгигант Бетельгейзе (вверху слева), Ригель (в правом нижнем углу) и Петля Барнарда (красная форма полумесяца).

Есть 12 зодиакальных созвездий, которые используют для отслеживания движения центра Солнца при вращении в течение года по эклиптике. Ближе к современности стали фигурировать более научные названия. Например, от Байера достались Золотая Рыба и Индеец, а Лакайль склонялся к научным приборам – Насос и Октант. Выбор названия основывался на схожести формы звездного узора или личных предпочтениях ученого (который обнаружил).

Тайны нейтронных звезд

Можно сказать, что до реального открытия этот звёздный класс был сначала спрогнозирован в теории. То есть астрономы предполагали возможность появления подобных космических объектов.Впервые же, их открыли лишь в 1967 году. Причем это был радиопульсар B1919+21 из созвездия Лисички.Сейчас же число найденных нейтронных звёзд свыше 2500. Как выяснилось, из них лишь немногие входят в кратные системы. В действительности же, большая часть это отдельные светила.

Созвездие Лисичка

К удивлению, некоторые считают, что в скором времени появится в Солнечной системе нейтронная звезда, которая принесёт апокалипсис и конец света.По некоторым данным, периодически в нашей системе появляется небесное тело с сильным магнитным полем. Его часто называют планетой Нибиру.Более того, легенды и мифы рассказывают о том, что этот таинственный объект уже посещал нас. Такое нашествие всегда несёт за собой разрушение. Опять-таки, согласно древним легендам подобное происходило несколько раз. И, если это правда, наша планета всё выдержала.На самом деле, астрономы замечали странный объект, который пока не идентифицировали. Хотя нет никаких доказательств о том, что он приближается к Земле и вообще, что это нейтронная звезда. Иногда, люди любят приукрашивать действительность.

Планета Нибиру (изображение)

Итак, мы разобрались что такое нейтронная звезда. Надеюсь, вам было интересно узнать как появляются и на какие типы делится этот вид светил.

Химический состав звезд

В списке всех звезд, которые относятся к первым четырем классам, преобладают линии гелия и водорода, однако постепенно, по мере снижения температуры можно обнаружить линии уже других элементов, которые даже могут указывать на существование соединений. Безусловно, соединения эти довольно просты. Это оксиды титана (класс М), циркония и радикалы. Наружный слой большинства звезд состоит, как правило, из водорода

Не редко встречаются звезды, которые в своем химическом составе имеют повышенное содержание определенного элемента. Ученым известны те звезды, которые в своем химическом составе имеют повышенное количество кремния (так называемые кремниевые звезды), железные звезды (звезды, с повышенным содержанием железа). Также существует множество звезд с повышенным содержанием марганца, углерода и т.д.

В космосе находится большое количество звезд, имеющих аномальный состав элементов. В некоторых молодых звездах, относящихся к типу красных гигантов, было найдено повышенное содержание различных тяжелых элементов.

Красный гигант

В одной из таких звезд было обнаружено содержание молибдена, которое было явно завышено и более того, доля молибдена на Солнце в 26 раз меньше, нежели у этой звезды.

По мере старения звезды содержание элементов уменьшается у тех звезд, которые имеют атомы большей массы, нежели масса атома гелия.

Также  вариации химического состава звезд зависят и от месторасположения звезд в Галактике. В старых звездах, которые находятся в сферической части галактики можно обнаружить мало атомов тяжелых элементов. Абсолютно противоположную ситуацию можно наблюдать в части, которая создает периферические своеобразные спиральные «рукава» галактики можно обнаружить достаточно большое количество звезд, в состав которых входит множество тяжелых элементов. Как правило, именно в таких частях и появляются новые звезды.

Исходя из этого, ученые пришли к выводу, что наличие тяжелых элементов приводит к своеобразной химической эволюции, которая характеризует начало жизни звезд.

Протозвезда

Звездные ясли в большом Магеллановом Облаке

Молекулярное облако во время гравитационного коллапса продолжает сжиматься до тех пор, пока не исчезнет гравитационная энергия. Избыточная энергия в основном теряется через излучение. Тем не менее, сжимающееся облако со временем становится непрозрачным для собственного излучения, что приводит к сильному повышению температуры — до 60-100 К. Частицы пыли излучают в длинноволновом инфракрасном спектре в области, где облако прозрачно. Таким образом, пыль способствует дальнейшему распаду облака.

Во время сжатия плотность облака увеличивается ближе к центру, и оно становится оптически непрозрачным при достижении около 10−13 грамм на кубический сантиметр. Место наибольшего скопления массы называется первым гидростатическим ядром, где начинается процесс повышения температуры, определяемой теоремой о вириале. Газ падает в сторону непрозрачной области сталкивается с ней и создает ударные волны, дополнительно нагревающие ядро.

Составное изображение молодых звезд, вокруг молекулярного облака в созвездии Цефей

Часть сложной сети, состоящей из газовых облаков и звёздных скоплений в соседней галактике, большом Магеллановом Облаке

Когда температура ядра достигает примерно 2000 К, начинается процесс разделения водорода, соединённого в молекулы. Этот процесс сопровождается ионизацией атомов водорода и гелия. Процессы поглощения энергии сжатия продолжительны. Когда плотность падающей материи составляет порядка 10−8 грамм на см³, достигается достаточная прозрачность, чтобы высвобождать излучаемую протозвездой энергию. Сочетание конвекции внутри протозвезды и излучения её внешней части способствует дальнейшему процессу сжатия звёздной материи. Это продолжается до тех пор, пока газ сохраняет достаточно высокую температуру для поддержания внутреннего давления и таким образом препятствует дальнейшему гравитационному коллапсу. Данное явление называется гидростатическим равновесием. Когда небесное тело находится на завершающем этапе образования, оно уже называется протозвездой.

Рождение протозвезды также сопровождается и образованием околозвёздного диска, который служит своеобразным резервуаром для дальнейшего формирования звезды. В частности, когда масса и температура звезды достигают достаточных отметок, сила гравитации вызывает процесс слияния звезды и диска. Материя диска «дождём» обрушивается на поверхность звезды. В этой стадии формируются биполярные струи, так называемые Объекты Хербига — Аро — небольшие участки туманности, являющиеся результатом скопления избыточной энергии в звезде и последующего выталкивания части массы материи звезды.

Когда процесс роста звезды за счёт окружающих газа и пыли прекращается, она ещё не является собственно звездой, и называется «звёздой до главной последовательности» или просто «звездой-PMS». Основным источником энергии данных объектов является процесс гравитационного сжатия, в отличие от сжигания водорода в «зрелых звездах». Процесс сжатия продолжается в соответствии с вертикальным эволюционным треком Хаяши в диаграмме Герцшпрунга — Рассела , пока не достигнет своей точки предела, с последующей фазой сжатия в соответствии с механизмом Кельвина — Гельмгольца. Во второй фазе температура звезды больше не меняется. Если масса звезды выше 0,5 M⊙{\displaystyle M_{\odot }}, то она продолжает сжиматься в соответствии с треком Хеньи и нагреваться до тех пор, пока в её недрах не запустится термоядерная реакция превращения водорода в гелий..

С момента, когда в ядре звезды начинает гореть водород, она уже считается полноценной звездой. В научной среде этап протозвезды в звездообразовании составлен исходя из массы, равной M⊙{\displaystyle M_{\odot }}, таким образом процесс образование более массивной звезды может занимать меньший промежуток времени и сопровождаться иными процессами.

В частности, если речь идёт о массивной протозвезде, (с массой выше 8 M⊙{\displaystyle M_{\odot }}), то сильное радиационное излучение препятствует падающей матери. Ранее считалось, что за счёт этого излучение может останавливать процесс дальнейшего сжатия массивных протозвёзд и предотвращать формирование звезд с массами больше, чем несколько десятков солнечных масс. Однако недавние исследования показали, что радиационная энергия может высвобождаться в виде мощных струй, способствуя очищению поверхности протозвезды и позволяя ей продолжать соединяться с материей околозвёздного диска.

Дальнейшая эволюция звезды изучается в астрофизике, как звёздная эволюция.

Протозвезда
Образование протозвезды — HOPS 383 (2015).

Ядерные реакции в недрах звезд

Как известно, большую часть любой звезды составляет водород, а как известно из школьного курса химии, этот газ очень хорошо горит. Правда “звездное горение” водорода отличается от привычного нам, ведь кислорода там очень мало.

Горение — это химический процесс, то есть перетасовка атомов между молекулами. Но энергии химических реакций недостаточно для поддержания солнечного тепла. С другой стороны, при чудовищном жаре в недрах звезд существование молекул невозможно, они там распадаются. Там возможны только перетасовки тех составных частей, из которых образованы сложные системы, называемые ядрами атомов.

При температурах в миллионы градусов происходит распад не только атомов, но и их ядер и перетасовка продуктов распада, отчего образуются новые химические атомы с иными химическими свойствами. Такие перетасовки называются ядерными реакциями.

Физика ядерных реакций установила, что источником энергии в звездах, в том числе и в Солнце, является непрерывное образование атомов гелия за счет атомов водорода.

Известно, что атом гелия весит приблизительно в четыре раза больше, чем атом водорода. Однако мы не получим атом гелия, сложив попросту четыре атома водорода. Прежде чем материал четырех водородных атомов создаст атом гелия, должен произойти целый ряд чудесных превращений, напоминающих сказочные превращения оборотней, и непременными помощниками и толкачами в этих превращениях оказываются атомы углерода.

Но такие превращения не проходят безнаказанно: при этом выделяется и теряется энергия, а она имеет массу. Оттого-то масса атома гелия получается несколько меньше массы четырех атомов водорода. Так работает фабрика гелия в недрах гигантских звезд.

Как бы не были велики запасы солнечного водорода, они все-таки не бесконечны. Тревожиться на этот счет не стоит – при современной мощности излучения Солнцу хватит “топливо” ещё минимум на 10 миллиардов лет (при том, что само Солнце появилось примерно 5 миллиардов лет назад).

Что же происходит когда звезда начинает “стареть” и “выгорать”? Водород превращается в гелий, а гелий, вероятно, превращается в более тяжелые элементы; следовательно, химический состав Вселенной подвержен непрерывному изменению. Отсюда напрашивается  и вывод – на заре зарождения нашей Вселенной, большая её часть состояла из водорода.

С течением времени доля тяжелых элементов по отношению к водороду увеличивается. Часть звездного вещества, обогащенная тяжелыми элементами, возвращается обратно в межзвездную газовую среду, может быть, в форме протуберанцев или более грандиозных взрывов, и поэтому сам межзвездный газ обогащается тяжелыми элементами. Однако даже в настоящее время атомов водорода в 2000 раз больше, чем атомов тяжелых элементов.

Это, как минимум, свидетельствует о том, что наша Вселенная ещё сравнительно молода и до её “старости” осталось не так уж мало времени.

Температура и спектр

Некоторые звезды очень горячие, другие – менее. Вы можете определить это по цвету света, который они испускают. Если вы посмотрите на угли в угольном гриле, то поймете, что красные светящиеся угли холоднее, чем белые. То же самое относится и к звездам. Синяя или белая звезда горячее, чем желтая звезда, которая горячее, чем красная звезда. Итак, если вы посмотрите на самый сильный цвет или длину волны света, излучаемого звездой, то вы можете рассчитать ее температуру (температура в градусах Кельвина = 3 x 106/ длина волны в нанометрах).

Спектр звезды может также показать химические элементы, которые находятся в ней, потому что различные элементы (например, водород, гелий, углерод, кальций) поглощают свет на разных длинах волн.

Звездная эволюция

Еще одна Земля во Вселенной

С массой примерно в 1,6 раза больше массы Земли, планета GJ 1132b вращается вокруг очень яркого красного карлика, размером в 1/5 от размера Солнца

Венероподобная планета GJ 1132b, расположенная примерно в 39 световых годах от нас, в настоящий момент является самой удаленной планетой земной группы, у которой ученые обнаружили наличие атмосферы.

С массой примерно в 1,6 раза больше массы Земли, планета GJ 1132b вращается вокруг очень яркого красного карлика, размером в 1/5 от размера Солнца. Полный оборот вокруг звезды планета совершает каждые 1,6 дня. Астрономы проследили за орбитой планеты GJ 1132b и выяснили, что спектральный анализ в инфракрасном диапазоне указывает на наличие богатой водой и метаном атмосферы.

Более важным в этом открытии является большой шаг в поиске внеземной жизни, который совершили ученые

Хотя сама по себе планета GJ 1132b мало для этого пригодна – при температуре-то 370 градусов Цельсия на поверхности, — однако открытие у планеты атмосферы означает, что с помощью более мощных телескопов в будущем мы сможем сосредоточить свое внимание на изучение миров, тоже обладающих атмосферой, которая косвенно повышает возможность открытия жизни. Все-таки найти ее на планетах с атмосферой шансов больше, чем на обычных выжженных булыжниках

Комментировать
0