fbpx
No Image

Почему при преодолении звукового барьера слышится хлопок?

СОДЕРЖАНИЕ
0
05 января 2021

Выведенные рекомендации для безопасных полётов

Безопасные полёты на околозвуковых и сверхзвуковых скоростях возможны при избегании волнового кризиса, возникновение которого зависит от аэродинамических параметров самолёта и высоты производимого полёта. Переходы с одного уровня скорости на другой должны выполняться максимально оперативно с применением форсажа, что поможет избежать долгого полёта в зоне волнового кризиса. Волновой кризис как понятие пришёл из водного транспорта. Возникал он в момент движения судов со скоростью, близкой к скорости волн на поверхности воды. Попадание в волновой кризис влечёт за собой затруднение роста скорости, и если максимально просто преодолеть волновой кризис, то можно выйти на режим глиссирования или скольжения по водной глади.

Подборки

Армейские ПесниКлассика пианиноМузыка из рекламыДетские песни из мультфильмовМузыка для аэробикиСборник песен 70х годовДля любимого человекаКлассика в современной обработкеКлубные миксы русских исполнителей3D ЗвукДальнобойщикиЗарубежный рэп для машиныТоповые Клубные ТрекиМощные БасыДискотека 2000Песни про папуХристианские ПесниЗимняя МузыкаМузыка Для МедитацииРусские Хиты 90ХГрустная МузыкаRomantic SaxophoneТанцевальный хип-хопНовогодние песниЗарубежные хиты 80 – 90Песни про покемонаРомантическая МузыкаМотивация для тренировокМузыка для сексаМузыка в машинуДля силовых тренировокПремия “Grammy 2017”

Классификация скоростей в атмосфере

При обычных условиях в атмосфере скорость звука составляет примерно 331 м/сек. Более высокие скорости иногда выражаются в числах Маха и соответствуют сверхзвуковым скоростям, при этом гиперзвуковая скорость является частью этого диапазона. НАСА определяет «быстрый» гиперзвук в диапазоне скоростей 10-25 М, где верхний предел соответствует первой космической скорости. Скорости выше считаются не гиперзвуковыми скоростями, а «скоростями невозврата» космических аппаратов на Землю.

Сравнение режимов

Режим Числа Маха км/ч м/с Общие характеристики аппарата
Дозвук <1,0 <1230 <340 Единственный диапазон скоростей для самолётов с воздушным винтом, прямые или скошенные крылья.
Трансзвук (англ.)русск. 0,8—1,2 980—1470 270—400 Воздухозаборники и слегка стреловидные крылья, сжимаемость воздуха становится заметной.
Сверхзвук 1,0—5,0 1230—6150 340—1710 Более острые края плоскостей, хвостовое оперение цельноповоротное.
Гиперзвук 5,0—10,0 6150—12300 1710—3415 Охлаждаемый никелево-титановый корпус, небольшие крылья. Пример: «Кинжал».
Быстрый гиперзвук 10,0—25,0 12300—30740 3415—8465 Кремниевые плитки для теплозащиты, несущий корпус аппарата вместо крыльев.
«Возвращение в плотные слои атмосферы» >25,0 >30740 >8465 Аблятивный тепловой экран, нет крыльев, форма капсул.

Сверхзвуковые самолеты в гражданской авиации

Что касается гражданских сверхзвуковых самолетов, то всего известны 2 серийных самолета, выполняющих регулярные рейсы: советский ТУ-144 и французский Concorde. ТУ-144 осуществил свой дебютный вылет в 1968 году. Данные аппараты были предназначены для дальних трансатлантических перелетов. Время перелета были значительно сокращены в сравнении с дозвуковыми аппаратами за счет увеличения высоты перелета до 18 км, где самолет использовал незагруженный воздушный коридор и миновал облачную загрузку.

Первый гражданский сверхзвуковой самолет СССР ТУ-144 завершил свои полеты в 1978 году по причине их нерентабельности. Окончательную точку в решении об отказе эксплуатировать в регулярных рейсах было принято из-за катастрофы опытного экземпляра ТУ-144Д во время его испытания. Хотя стоит отметить, что за рамками гражданской авиации самолет ТУ-144 продолжали эксплуатировать для срочной почтовой и грузовой доставки с Москвы в Хабаровск вплоть до 1991 года.

Тем временем несмотря на дорогие билеты, французский сверхзвуковой самолет «Конкорд» продолжал оказывать услуги аваиарейсов для своих европейских клиентов до 2003 года. Но в конце концов, несмотря на более богатый социальный слой европейских жителей, вопрос нерентабельности был все равно неминуем.

Теория

В аэродинамике часто скорость характеризуют числом Маха, которое определяется следующим образом:
M=ucs{\displaystyle M={\frac {u}{c_{s}}}}, где u — скорость движения потока или тела, cs{\displaystyle c_{s}} — скорость звука в среде.
Звуковая скорость определяется как cs=γpρ{\displaystyle c_{s}={\sqrt {\gamma {\frac {p}{\rho }}}}}, где γ{\displaystyle \gamma } — показатель адиабаты среды (для идеального n-атомного газа, молекула которого обладает i{\displaystyle i} степенями свободы он равен i+2i{\displaystyle {\frac {i+2}{i}}}). Здесь i=np+nr+2nc{\displaystyle i=n_{p}+n_{r}+2n_{c}} — полное число степеней свободы молекулы. При этом, количество поступательных степеней свободы np=3{\displaystyle n_{p}=3}. Для линейной молекулы количество вращательных степеней свободы nr=2{\displaystyle n_{r}=2}, количество колебательных степеней свободы (если есть) nc=3n−5{\displaystyle n_{c}=3n-5}. Для всех других молекул nr=3{\displaystyle n_{r}=3}, nc=3n−6{\displaystyle n_{c}=3n-6}.

При движении в среде со сверхзвуковой скоростью тело обязательно создаёт за собой звуковую волну. При равномерном прямолинейном движении фронт звуковой волны имеет конусообразную форму, с вершиной в движущемся теле. Излучение звуковой волны обуславливает дополнительную потерю энергии движущимся телом (помимо потери энергии вследствие трения и прочих сил).

Аналогичные эффекты испускания волн движущимися телами характерны для всех физических явлений волновой природы, например: черенковское излучение, волна, создаваемая судами на поверхности воды.

Саундтреки

Из фильма В центре вниманияИз фильма Ван ХельсингИз сериала Дневники ВампираИз фильма Скауты против зомбииз фильмов ‘Миссия невыполнима’Из фильма Голодные игры: Сойка-пересмешница. Часть 2OST ‘Свет в океане’OST “Большой и добрый великан”из фильма ‘Новогодний корпоратив’из фильма ‘Список Шиндлера’ OST ‘Перевозчик’Из фильма Книга джунглейиз сериала ‘Метод’Из фильма ТелохранительИз сериала Изменыиз фильма Мистериум. Тьма в бутылкеиз фильма ‘Пассажиры’из фильма ТишинаИз сериала Кухня. 6 сезониз фильма ‘Расплата’ Из фильма Человек-муравейиз фильма ПриглашениеИз фильма Бегущий в лабиринте 2из фильма ‘Молот’из фильма ‘Инкарнация’Из фильма Савва. Сердце воинаИз сериала Легко ли быть молодымиз сериала ‘Ольга’Из сериала Хроники ШаннарыИз фильма Самый лучший деньИз фильма Соседи. На тропе войныМузыка из сериала “Остров”Из фильма ЙоганутыеИз фильма ПреступникИз сериала СверхестественноеИз сериала Сладкая жизньИз фильма Голограмма для короляИз фильма Первый мститель: ПротивостояниеИз фильма КостиИз фильма Любовь не по размеруOST ‘Глубоководный горизонт’Из фильма Перепискаиз фильма ‘Призрачная красота’Место встречи изменить нельзяOST “Гений”из фильма ‘Красотка’Из фильма Алиса в ЗазеркальеИз фильма 1+1 (Неприкасаемые)Из фильма До встречи с тобойиз фильма ‘Скрытые фигуры’из фильма Призывиз сериала ‘Мир Дикого Запада’из игр серии ‘Bioshock’ Музыка из аниме “Темный дворецкий”из фильма ‘Американская пастораль’Из фильма Тарзан. ЛегендаИз фильма Красавица и чудовище ‘Искусственный интеллект. Доступ неограничен”Люди в черном 3’из фильма ‘Планетариум’Из фильма ПрогулкаИз сериала ЧужестранкаИз сериала Элементарноиз сериала ‘Обратная сторона Луны’Из фильма ВаркрафтИз фильма Громче, чем бомбыиз мультфильма ‘Зверопой’Из фильма БруклинИз фильма Игра на понижениеИз фильма Зачарованнаяиз фильма РазрушениеOST “Полный расколбас”OST “Свободный штат Джонса”OST И гаснет светИз сериала СолдатыИз сериала Крыша мираИз фильма Неоновый демонИз фильма Москва никогда не спитИз фильма Джейн берет ружьеИз фильма Стражи галактикииз фильма ‘Sos, дед мороз или все сбудется’OST ‘Дом странных детей Мисс Перегрин’Из игры Contact WarsИз Фильма АмелиИз фильма Иллюзия обмана 2OST Ледниковый период 5: Столкновение неизбежноИз фильма Из тьмыИз фильма Колония Дигнидадиз фильма ‘Страна чудес’Музыка из сериала ‘Цвет черёмухи’Из фильма Образцовый самец 2из фильмов про Гарри Поттера Из фильма Дивергент, глава 3: За стеной из мультфильма ‘Монстр в Париже’из мультфильма ‘Аисты’Из фильма КоробкаИз фильма СомнияИз сериала Ходячие мертвецыИз фильма ВыборИз сериала Королек – птичка певчаяДень независимости 2: ВозрождениеИз сериала Великолепный векиз фильма ‘Полтора шпиона’из фильма Светская жизньИз сериала Острые козырьки

Особенности сверхзвукового полета

Конструкция крыльев сверхзвуковых самолетов

Подъемная сила и лобовое сопротивление со скоростью увеличиваются, поэтому крылья становятся меньше, тоньше и приобретали стреловидную форму, улучшая обтекаемость.

У самолетов, приспособленных к сверхзвуковым полетам крылья в отличии от обычных дозвуковых самолетов вытягивались под острым углом назад, напоминая наконечник стрелы. Внешне крылья образовывали треугольник в единой плоскости с его остроугольной вершиной в передней части самолета. Треугольная геометрия крыла позволяла управлять самолетом предсказуемо в момент перехода звукового барьера и как следствие избежать вибраций.

Существуют модели, в которых применялись крылья с изменяемой геометрией. В момент взлета и посадки угол крыла относительно самолета равнялся 90 градусам, то есть перпендикулярен. Это необходимо для создания максимальной подъемной силы в момент взлета и посадки, то есть в тот момент когда скорость снижается и подъемная сила при остром угле при неизменной геометрии достигает своего критического минимума. С ростом скорости геометрия крыла изменяется до максимально острого угла у основания треугольника.

Проблемы сверхзвукового полета

Как бы ни разгонялся обычный самолет, он не сможет длительное время лететь на сверхзвуковой скорости. Дозвуковые самолеты отличаются более плавными и округленными формами. А при полете на сверхзвуковой скорости возникают иные аэродинамические условия.

Резко увеличивается сопротивление воздуха, корпус самолета нагревается из-за трения. В результате обычный самолет потеряет стабильное управление и может начать разрушаться прямо в воздухе.

Активно развиваться сверхзвуковая авиация начала в 50-60-х годах. Первым сверхзвуковым самолетом, который выпускался серийно, стал истребитель North American F-100 Super Sabre. Данная модель впервые совершила полет в 1953 году.

Создавались и пассажирские сверхзвуковые самолеты, которые выполняли регулярные рейсы. Но их было всего 2: советский Ту-144 и англо-французский Concorde.

Сверхзвуковой пассажирский самолет Ту-144

Преимущество таких самолетов – это преодоление больших расстояний за короткий промежуток времени. Также сверхзвуковой самолет перемещается на большей высоте по сравнению с обычными. Соответственно, воздушное пространство не загружено. Но от их использования вскоре отказались из-за нескольких недостатков:

  • ударная волна;
  • большой расход топлива;
  • сложность эксплуатации;
  • шум над аэродромом.

Громкий хлопок – это резкий скачок давления перед самолетом, образующийся в момент, когда самолет начинает двигаться со сверхзвуковой скоростью (преодолевает звуковой барьер). Ударная волна, возникающая перед самолетом, распространяется конусообразно. Человек, наблюдающий за полетом самолета, слышит хлопок, когда эта волна достигает его, и только после этого можно услышать работу двигателя. Ударная волна постоянно сопровождает самолет на сверхзвуковой скорости. Однако хлопки будет слышно лишь во время прохождения самолета в определенной точке – поблизости с наблюдателем.

Число Маха в авиации

Теорию с подтверждающим экспериментальным процессом образования ударных волн был продемонстрировал еще задолго до первого полета сверхзвукового самолета австрийский физик Эрнст Мах (1838 — 1916). Величину, выражающую отношение скорости летательного аппарата к скорости звуковой волны называют сегодня в честь ученого — Махом.

Как мы уже оговорились в водной части, на скорость звука в воздушной среде влияют такие метеорологические условия как давление, влажность и температура воздуха. Температура в зависимости от высоты полета самолета меняется от +50 на поверхностях Земли до -50 в слоях стратосферы. Поэтому на разных высотах для достижения сверхзвуковых скоростей обязательно учитываются местные метеоусловия.

Для сравнения над нулевой отметкой уровня моря скорость звука составляет 1240 км/ч, тогда как на высоте более 13 тыс. км. эта скорость снижается до 1060 км/ч.

Если принять соотношение скорости летательного аппарата к скорости звукова за М, то при значении М>1, это будет всегда сверхсвуковая скорость.

Самолеты с дозвуковой скоростью имеют значение М = 0.8. Вилка значений Маха от 0,8 до 1,2 задают околозвуковую скорость. А вот гиперзвуковые летательные аппараты имеют число Маха более 5. Из известных военных российских сверхзвуковых самолетов можно выделить СУ-27 — истребитель перехватчик, Ту-22М — бомбардировщик ракетоносец. Из американских известен SR-71 — самолет разведчик. Первым сверхзвуковым самолетом в рамках серийного производства стал американский истребитель F-100 в 1953 году.

Модель космического челнока во время испытаний в сверхзвуковой аэродинамической трубе. Специальная методика теневой фотографии позволила запечатлеть, где возникают ударные волны.

Комплексные задачи создателей летательных аппаратов

Известные на весь мир самолеты МиГ-15 стали создавать в тот момент, когда разработчики поняли, что невозможно базироваться только на преодолении звукового барьера, а следует решать комплексные технические задачи. В результате была создана машина настолько удачная, что её модификации встали на вооружение разных стран. Несколько различных конструкторских бюро включились в своеобразную конкурентную борьбу, призом в которой был патент на самый успешный и функциональный летательный аппарат. Разрабатывались самолёты со стреловидными крыльями, что было революцией в их конструкции. Идеальный аппарат должен был быть мощным, быстрым и невероятно устойчивым к любым повреждениям извне. Стреловидные крылья у самолётов стали элементом, который помогал им втрое повышать скорость звука. Далее скорость самолётов продолжала нарастать, что объяснялось увеличением мощности двигателей, применением инновационных материалов и оптимизацией аэродинамических параметров. Преодоление звукового барьера стало возможным и реальным даже для непрофессионала, но менее опасным оно от этого не становится, поэтому любой экстремал должен здраво оценивать свои силы, прежде чем решиться на такой эксперимент.

Ударная волна, вызванная летательным аппаратом

Фотография ударных волн при обтекании модели сверхзвуковым потоком в аэродинамической трубе (Аэродинамическая лаборатория NASA)

Распространение ударной волны, вызванной сверхзвуковым самолётом. Жёлтая линия — след ударной волны на земле. Снаружи конуса ударной волны (а на земле — перед жёлтой линией) самолёт не слышен.

При обтекании сверхзвуковым воздушным потоком твёрдого тела на его передней кромке образуется ударная волна (иногда не одна, в зависимости от формы тела). На фото слева видны ударные волны, образованные на острие фюзеляжа модели, на передней и задней кромках крыла и на заднем окончании модели.

На фронте ударной волны (называемой иногда также скачком уплотнения), имеющем очень малую толщину (доли миллиметра), почти скачкообразно происходят кардинальные изменения свойств потока — его скорость относительно тела снижается и становится дозвуковой, давление в потоке и температура газа скачком возрастают. Часть кинетической энергии потока превращается во внутреннюю энергию газа. Все эти изменения тем больше, чем выше скорость сверхзвукового потока. При гиперзвуковых скоростях (число Маха=5 и выше) температура газа достигает нескольких тысяч кельвинов, что создаёт серьёзные проблемы для аппаратов, движущихся с такими скоростями (например, шаттл «Колумбия» разрушился 1 февраля 2003 года из-за повреждения термозащитной оболочки, возникшего в ходе полёта).

Фронт ударной волны по мере удаления от аппарата постепенно принимает почти правильную коническую форму, перепад давления на нём уменьшается с увеличением расстояния от вершины конуса, и ударная волна превращается в звуковую. Угол между осью и образующей конуса α{\displaystyle \alpha } связан с числом Маха соотношением

sin⁡α=1M.{\displaystyle \sin \alpha ={\frac {1}{M}}.}

Когда эта волна достигает наблюдателя, находящегося, например, на Земле, он слышит громкий звук, похожий на взрыв. Распространенным заблуждением является мнение, будто бы это следствие достижения самолётом скорости звука, или «преодоления звукового барьера». На самом деле, в этот момент мимо наблюдателя проходит ударная волна, которая постоянно сопровождает самолёт, движущийся со сверхзвуковой скоростью. Обычно сразу после «хлопка» наблюдатель может слышать гул двигателей самолёта, не слышный до прохождения ударной волны, поскольку самолёт движется быстрее звуков, издаваемых им. Очень похожее наблюдение имеет место при дозвуковом полёте — самолёт, летящий над наблюдателем на большой высоте (больше 1 км), не слышен, точнее слышим с опозданием: направление на источник звука не совпадает с направлением на видимый самолёт для наблюдателя с земли.

Аналогичное явление может наблюдаться при артиллерийском огне: наблюдатель в нескольких километрах перед орудием может сначала видеть вспышку выстрела, через некоторое время слышит «гром» пролетевшего снаряда (и ещё несколько секунд после этого — создаваемый им шум).

Как осуществляется штурм звукового барьера?

До 1947 года не было фактических данных о самочувствии человека в кабине самолёта, который летит быстрее звука. Как оказалось, преодоление звукового барьера требует определённых сил и отваги. В процессе полёта становится ясно, что нет никаких гарантий выжить. Даже профессиональный пилот не может точно сказать, выдержит ли конструкция самолёта атаку стихии. В считанные минуты самолёт может просто развалиться на части. Чем же это объясняется? Следует отметить, что движение с дозвуковой скоростью создаёт акустические волны, разбегающиеся как круги от упавшего камня. Сверхзвуковая скорость возбуждает ударные волны, а стоящий на земле человек слышит звук, похожий на взрыв. Без мощных вычислительных машин сложно было решить сложные дифференциальные уравнения, и приходилось опираться на продувание моделей в аэродинамических трубах. Иногда при недостаточном ускорении самолёта ударная волна достигает такой силы, что вылетают окна из домов, над которыми пролетает самолёт. Преодолеть звуковой барьер сможет далеко не каждый, ведь в этот момент трясёт всю конструкцию, значительные повреждения могут получить крепления аппарата

Поэтому для пилотов так важно крепкое здоровье и эмоциональная стабильность. Если полёт идёт мягко, а звуковой барьер преодолён максимально быстро, то ни пилот, ни возможные пассажиры не почувствуют особо неприятных ощущений

Специально для покорения звукового барьера был сооружён исследовательский летательный аппарат в январе 1946 года. Создание машины было инициировано заказом министерства обороны, но взамен оружия её напичкали научной аппаратурой, которая отслеживала режим работы механизмов и приборов. Этот самолёт походил на современную крылатую ракету со встроенным ракетным двигателем. Преодоление самолётом звукового барьера происходило при максимальной скорости 2736 км/ч.

Загадка самого шумного города

Не зря жители маленьких городов испытывают шок, увидев столицу в первый раз. Обилие транспорта, сотни ресторанов и развлекательных центров сбивают с толку и выбивают из привычной колеи. Начало весны в столице обычно датируется апрелем, а не мятежным вьюжным мартом. В апреле здесь чистое небо, бегут ручьи и распускаются почки. Люди, уставшие от долгой зимы, широко распахивают окна навстречу солнцу, и в дома врывается уличный шум. На улице оглушительно щебечут птицы, поют артисты, декламируют стихи весёлые студенты, не говоря уже о шуме в пробках и метро. Сотрудники отделов гигиены отмечают, что долго находиться в шумном городе вредно для здоровья. Звуковой фон столицы состоит из транспортных, авиационных, промышленных и бытовых шумов. Наиболее вредным является как раз автомобильный шум, так как самолёты летают достаточно высоко, а шум от предприятий растворяется в их зданиях. Постоянный же гул автомобилей на особо оживлённых магистралях превышает все допустимые нормы в два раза. Как в столице преодолевается звуковой барьер? Москва опасна обилием звуков, поэтому жители столицы устанавливают стеклопакеты, чтобы приглушить шум.

Комментировать
0