fbpx
No Image

Принципы и устройство подводной лодки

СОДЕРЖАНИЕ
0
04 января 2021

Принцип действия субмарины

Система погружения и всплытия подводной лодки включает в себя балластные и вспомогательные цистерны, а также соединительные трубопроводы и арматуру. Основной элемент здесь – это цистерны главного балласта, за счет заполнения водой которых погашается основной запас плавучести ПЛ. Все цистерны входят в носовую, кормовую и среднюю группы. Их можно заполнять и продувать по очереди или одновременно.

У подлодки есть дифферентные цистерны, необходимые для компенсации продольного смещения грузов. Балласт между дифферентными цистернами передувается при помощи сжатого воздуха или же перекачивается с помощью специальных помп. Дифферентовка – именно так называется прием, целью которого является «уравновешивание» погруженной ПЛ.

Атомные подлодки делят на поколения. Для первого (50-е) характерна относительно высокая шумность и несовершенство гидроакустических систем. Второе поколение строили в 60-е – 70-е годы: форма корпуса была оптимизирована, чтобы увеличить скорость. Лодки третьего больше, на них также появилось оборудование для радиоэлектронной борьбы. Для АПЛ четвертого поколения характерны беспрецедентно малый уровень шума и продвинутая электроника. Облик лодок пятого поколения прорабатывается в наши дни.

Важный компонент любой субмарины – воздушная система. Погружение, всплытие, удаление отходов – все это делается при помощи сжатого воздуха. Последний хранят под высоким давлением на борту ПЛ: так он занимает меньше места и позволяет аккумулировать больше энергии. Воздух высокого давления находится в специальных баллонах: как правило, за его количеством следит старший механик. Пополняются запасы сжатого воздуха при всплытии. Это долгая и трудоемкая процедура, требующая особого внимания. Чтобы экипажу лодки было чем дышать, на борту субмарины размещены установки регенерации воздуха, позволяющие получать кислород из забортной воды.

Корпус ПЛ

Практически большинство современных ПЛ имеет двойной корпус или, как принято называть, двухкорпусной (делится на легкий и прочный корпуса). Сначала идет легкий корпус, основное предназначение которого – придание обтекаемой формы подводному кораблю в виде цилиндрической / полуцилиндрической формы или в виде фасоли (удлиненной). Данная особенность при плавании обеспечивает наименьшее сопротивление с водой. Корпус делают из стальных листов толщиною до 8 мм. Он – не прочный, поскольку не обеспечивает проницаемость воды, так как в подводном положении внутри него находится вода. Внутри легкого корпуса устанавливают различные системы и устройства, которые не подвержены её влиянию. К таким системам относят:

  • различные трубы;
  • контейнеры торпедных аппаратов и крылатых ракет;
  • устройства якоря;
  • цистерны для главного балласта и топлива;
  • различные антенны;
  • тяги рулевых устройств и т.д.

Как устроена обычная подводная лодка, чтобы выдержать давление в десятки тысяч тонн на большой глубине?

Для этого существует основной элемент конструкции ПЛ – прочный корпус. Он предназначен для того чтобы:

  • выдерживать высокое давление воды (чем глубже погружается ПЛ, тем сильнее тонны воды оказывают давление на корпус, а в больших глубинах ПЛ сложнее обнаружить и уничтожить);
  • обеспечивать герметичность и не пропускать воду, тем самым защищать экипаж корабля от гибели.

Прочную конструкцию изготавливают в виде кольцевых дуг, которые называются шпангоутами. Расстояние между ними различное – от 3 – 5 до 700 мм. Шпангоуты соединяются между собой обшивкой. Обе детали изготавливаются из стали или титана, толщина металла может быть от 35 до 800 мм. Прочный корпус разделен переборками, которые образуют от 6 до 10 независимых отсеков. В этом замкнутом пространстве располагается экипаж лодки, основное оборудование, аккумуляторные батареи, энергетические установки и вооружение. Сами отсеки разделены дверями, которые не пропускают воду, тем самым обеспечивают целостность ПЛ.

Для уменьшения гидроакустической заметности, снижения вероятности обнаружения акустическими средствами противника на корпус наносят резиновое покрытие.

Процесс погружения подводной лодки достаточно простой. Так, в цистерны (принято, что в ПЛ имеется три типа данных цистерны), которые находятся между легким и прочным корпусами подается вода (подводники называют – балласт). Она заполняет эти цистерны, и лодка погружается. Для всплытия необходимо вытеснить жидкость с помощью сжатого воздуха.

Основные системы подводной лодки

Подводная лодка устроена как объединения всех главных систем в прочном корпусе. Здесь находятся такие конструкции как:

  • система подачи воздуха;
  • электроэнергетическая система;
  • система подачи топлива;
  • водоотливная система;
  • система пожаротушения.

В различных отсеках, в зависимости от предназначения лодки, располагаются:

  • кают-компании и кубрики для экипажа;
  • кают-компания для командира;
  • центральный пост управления;
  • машинное отделение с двигателями;
  • радиорубка;
  • шахты подачи боеприпасов;
  • аккумуляторы;
  • холодильники;
  • радиоэлектронное оборудование, дальномеры, перископ и т.д.

Лодку можно обнаружить за счет шума, который она издает во время движения и работы двигателей. Поэтому все ее механизмы установлены на специальные каркасы через резиновые пневматические амортизаторы.

Автономность плавания – одна из важных характеристик подводного судна, чем дольше оно находится в районах боевого дежурства, тем сложнее его обнаружить. Вопрос автономности решается за счет установки современных двигателей.

Принцип действия субмарины

На подводную лодку

Послевоенные дизель-электрические подводные лодки

По окончании Второй мировой войны развитие подводных лодок происходило под сильным влиянием достижений германского флота. Германский Кригсмарине успел разработать весьма эффективные подводные аппараты, но, к счастью для союзников, поставить их на вооружение и использовать по назначению уже не удалось.

Боевая субмарина проекта 877 (тип «Варшавянка») ВМФ России

Советские конструкторы на базе германской подводной лодки серии XXI разработали лодку проекта 613 водоизмещением 1350 т. Ее энергетическая установка состояла из двух дизелей и электродвигателей. Вооружение включало 4 носовых и 2 кормовых 533-мм торпедных аппарата. Под водой лодка развивала скорость хода до 13,1 узла, в надводном положении — до 18,3 узла. Командование ВМФ СССР планировало построить сразу 340 таких лодок. С 1950 по 1957 г. удалось изготовить 215 единиц, что стало рекордной цифрой серийного выпуска подводных лодок в отечественном кораблестроении.

Примерно тогда же в Советском Союзе была разработана более крупная лодка проекта 641. Эта субмарина водоизмещением 1950 т имела на вооружении сразу 10 торпедных аппаратов (6 носовых и 4 кормовых) калибра 533 мм. Боезапас составлял 22 торпеды или 32 мины. Всего было построено 75 таких подводных кораблей.

Советская подлодка проекта 641

Новые германские лодки проекта 212 оснащаются гибридной двигательной установкой. Под водой используются аккумуляторные батареи, а для плавания в надводном положении — традиционный дизель-генератор. Лодка имеет водоизмещение 1830 т. Под водой она может идти со скоростью до 20 узлов, скорость надводного хода — 14,2 узла. Вооружение состоит из 6 торпедных аппаратов.

Высоким спросом на мировых рынках вооружений пользуются советские/российские подводные лодки проекта 877 «Варшавянка» и аналогичные им лодки проектов 636 и 677.

Подводная лодка проекта 613 советских ВМС

По проекту 877 изготовлено около 50 лодок. Они имеют водоизмещение 3950 т и оснащены энергетической установкой мощностью 3750 л. с. Скорость подводного хода достигает 17 узлов, надводного — 10 узлов. Вооружение состоит из 6 торпедных аппаратов.

Следует отметить, что наряду с традиционным торпедным вооружением многие современные дизель-электрические подводные лодки имеют и ракетное вооружение, причем крылатые и противокорабельные ракеты запускаются из стандартных торпедных аппаратов.

Подводная лодка номер U-31 проекта 212 ВМФ Германии

С 1990 по 2003 г. было построено 6 дизель-электрических подводных лодок типа «Коллинз» — единственных типов подводных лодок ВМФ Австралии. Эти субмарины водоизмещением 3353 т — настоящие гиганты среди дизель-электрических «одноклассниц». Их вооружение составляет 6 носовых 533-мм торпедных аппаратов с боезапасом 22 торпеды. Вместо торпед могут использоваться ракеты «Гарпун» (боезапас 22 ракеты) или мины (44 штуки).

Таким образом, в течение полувека подводная лодка превратилась из плавсредства, способного лишь на непродолжительное время уходить под воду, в совершенный боевой корабль. Такое судно способно длительное время находиться под водой, перемещаться с высокой скоростью и поражать цели не только в море, но и на суше.

Субмарина типа «Коллинз» ВМФ Австралии

Первая подлодка, сумевшая потопить корабль

Американцы и здесь стали первопроходцами. Первая подлодка, применённая в бою с успешным результатом, была создана человеком по имени Хорас Ханли. И наименована она была в честь него — «Ханли». Эту подлодку использовал флот конфедератов во время Гражданской войны в Штатах 1861–1865 гг.

Субмарина «Ханли» была, конечно, гораздо совершенней «Черепахи». Гребной винт-движитель вращался здесь при помощи коленчатого вала, на который воздействовали семь матросов. А управлялась подлодка командиром, у которого было своё отдельное место. Вооружена «Ханли» была миной, укреплённой на шесте на самом краю судна. Также здесь были две башенки с люками, из которых можно было наблюдать за окружающей обстановкой, входить и выходить членам экипажа.

Подлодка «Ханли» была рассчитана на 8 человек

В атаку «Ханли» отправилась 17 февраля 1864 года. Целью подлодки был находящийся в прибрежной акватории Чарльстона шлюп «Хаусатоник» с водоизмещением 1240 тонн. Шлюп располагался в восьми километрах от береговой линии.

Экипажу «Ханли» под руководством Джорджа Диксона удалось атаковать корабль. Он за несколько минут ушёл на дно, а находившиеся на нём моряки были вынуждены спасаться на шлюпках. Затем подлодка подала сигнал о своём возвращении, погрузилась в воду и пропала.

Только в 2000 году подлодку с телами погибших подняли со дна, благодаря чему эксперты даже смогли установить, из-за чего погиб её экипаж. Причиной стала ударная волна, распространившаяся от взрыва мины. Таким образом, «Хаусатоник» стал первым кораблём, потопленным субмариной, а моряки, находившиеся в «Ханли», — первыми погибшими в реальном сражении подводниками.

«Ханли» подняли со дна в 2000 году — она довольно хорошо сохранилась

Эволюция подводных лодок с атомным реактором

Вооружение подводных лодок: ядерное и неядерное

Системы для погружения и всплытия

Для погружения подводная лодка должна иметь отрицательную плавучесть. Этого достигали двумя способами – повышением веса или снижением водоизмещения. Для повышения веса в подводных лодках имеются балластные цистерны, которые заполняются водой либо воздухом.

Для обычного всплытия или погружения лодки применяют кормовые, а также носовые цистерны или цистерны главного балласта. 

Чтобы быстро и точно контролировать глубину, применяют цистерны с контролем глубины. 

Чтобы управлять направлением лодки, применяются вертикальные рули. На современных машинах рули могут достигать огромных размеров.

Американская и советская школа кораблестроения

Исторические факты

Самая первая информация о подобных плавательных средствах датируется 1190 годом. В одном из германских сказаний главный персонаж построил нечто вроде подводной лодки из кожи и сумел скрыться на ней от судов врага на морском дне. Воздух внутрь подавался через трубку, второй конец которой был на поверхности. 

В эпоху научно-технического прогресса, в Санкт-Петербурге тайным образом инженеры заложили принцип устройства подводной лодки, предназначенной для вооруженных сил. Далее прототип спустили на воду, и он смог успешно пройти все испытания.

Первой серийной подводной лодкой стало судно Джевецкого. Затем конструкция была усовершенствована, и вместо весельного привода появился вначале пневматический, а затем и электропривод. 

Первой электрической субмариной стало судно разработки Клода Губэ. Прототип спустили на воду в 1888 году. Для передвижения использовался электрический двигатель мощностью 50 лошадиных сил. 

В 1900 году французские инженеры создали первую лодку с паровым и электрическим двигателем. Американское судно по подобию разработки французов работало на бензиновом двигателе для плавания над поверхностью воды.

Ставка на атомный подводный флот

Технология атомной энергетики слишком заманчива, чтобы не использовать ее в военных целях. Я даже не говорю об атомной бомбе, принцип действия которой тоже основан на цепной реакции деления атомов и выделении энергии. Просто в случае с бомбой, в отличии от энергетической установки, деление атомов бесконтрольное.

В дальнем автономном плавании и на боевом дежурстве атомные лодки хороши тем, что не вырабатывают столько шума, сколько дизельные, имеют больший размер и могут месяцами находиться на дежурстве в любой части мирового океана.

В начале 70-х годов основными игроками на рынке атомных субмарин были, как не сложно догадаться, СССР и США. Именно они сделали ставку на развитие атомного флота и немало преуспели в этом. Особенно, всем хотелось иметь больше лодок, способных нести баллистические ракеты.

Подводные лодки были основой сдерживания во времена холодной войны. Океан надежно прикрывал их своими водами.

Размеры лодок постепенно росли и в результате титул самой большой подводной лодки в мире переходил от одной страны к другой. Один из самых знаменитых американских проектов получил название ”Огайо”. Эти лодки были способны нести до 24 межконтинентальных баллистических ракет. Ответом СССР была подводная лодка проекта 941. Условное название лодки было ”Акула”, но более известна она под именем ”Тайфун”. Про нее мы сегодня и поговорим.

Общее устройство современной АПЛ

Ракетонесущий атомный подводный крейсер проекта 941 «Акула» в разрезе

Среднестатистическую подводную лодку, бороздящую Мировой океан прямо сейчас, можно описать единой концептуальной схемой. Отдельные агрегаты и линии могут меняться, но сама идея остаётся неизменной с семидесятых годов.

Большинство российских субмарин используют два корпуса (отдельные капсулы в общем) – внутренний из мягкого и прочного титана и внешний из маломагнитной стали. Американские используют один многослойный корпус, разделенный переборками. Как и 50 лет назад.

Между корпусами (у АПЛ США – в общем объеме) расположены ёмкости для воды. При их заполнении лодка опускается, откачка поднимает судно на поверхность. Цистерны можно заполнять одновременно или по-очереди.

Кроме основных, есть так называемые дифферентные цистерны: их заполняют для выравнивания лодки после загрузки и при движении груза. Эта система работает все время, даже под водой при горизонтальном движении.

Многоцелевая АПЛ класса «Вирджиния» ВМС США

Существуют также лодки с корпусом смешанного типа (когда легкий корпус перекрывает основной лишь частично) и многокорпусные (несколько прочных корпусов внутри легкого).

Переборки между отсеками рассчитаны на давление в 10 атмосфер и сообщаются люками, которые можно герметизировать, если это необходимо. Не все отечественные атомные субмарины имеют так много отсеков.

Для справки: многоцелевая АПЛ проекта 971, например, разделена на шесть отсеков, а новый ракетоносец проекта 955 — на восемь.

«Странные» лодки Хирохито

Идея «скрестить» надводный корабль-авианосец и подводную лодку, как это ни удивительно, тоже появилась в период Первой мировой. 

Япония одной из первых ухватилась за такую возможность. Если раньше базирующиеся на борту подводной лодки самолеты применяли лишь в целях разведки, то японцы мечтали о бомбардировках далеких и недосягаемых территорий. Так родилась идея снабдить «подводный» самолет парой бомб. Страна восходящего солнца даже испытала концепцию на практике. 

Первую субмарину с возможностью перевозки самолетов японцы построили уже к 1932 году. Подводная лодка I-5 проекта J-1M получила герметичный ангар, где мог помещаться маленький гидроплан. Обеспечить герметизацию щелей в большом люке ангара оказалось сложной инженерной задачей. Кран, который цеплял самолет, часто отказывал в условиях соленой морской воды. Самолет просто спускали на воду при помощи крана, а потом точно так же подбирали.

В 1935 году японский флот получил лодку – I-6 проекта J-2. Ангар увеличенного объема позволил разместить там гидросамолет Watanabe E9W. Он представлял собой биплан с двумя поплавками, оснащенный двигателем Hitachi Tempu II мощностью в 300 лошадиных сил, который вращал двухлопастный деревянный винт постоянного шага.

Самолет можно было легко собирать и разбирать прямо на палубе подводной лодки, что стало несомненным плюсом. 

Были слишком очевидны и недостатки лодок I-5 и I-6. Подготовка к старту и сам запуск требовали много времени и сил, что в условиях войны было чревато потоплением субмарины.

Так появился более удачный проект подводного авианосца J-3. Ангар субмарины вмещал уже два самолета, а для их взлета использовали катапульту и трамплин. 

Лодку I-7 спустили на воду в 1939 году, а немного позже достроили I-8. Незадолго до атаки на Перл-Харбор японский Военно-морской флот пополнила еще одна похожая субмарина – I-9 проекта A1, который включал в себя всего три подводные лодки, каждая из которых несла один гидросамолет.

Полученный японцами опыт позволил создать и первый по-настоящему массовый подводный авианосец в истории. Летом 1942 года японцы спустили на воду лодку I-15 проекта B1.

Важной отличительной особенностью более поздних японских лодок был возросший воздушный потенциал. 

В сентябре 1942 года самолет Yokosuka E14Y, доставленный лодкой I-25 типа B1, совершил налет на территорию штата Орегон, сбросив две 76-килограммовые зажигательные бомбы.

Предполагалось, что они спровоцируют пожары в лесных массивах с последующим ущербом для экономики. Но этого не случилось.

Зато субмарина I-25 вошла в историю: рейд Yokosuka E14Y стал единственным случаем бомбардировки континентальной части США с самолета за всю Вторую мировую.

Практически полное отсутствие у Японии тяжелых бомбардировщиков лишало страну возможности ковровых бомбардировок США, так что воздушные авианосцы стали единственной отдушиной. 

Настоящей же мини-революцией были японские субмарины типа I-400, первые из которых завершили в 1944-1945-х. Главное – в том, что каждая такая субмарина имела серьезную авиагруппу, включавшую до четырех бомбардировщиков Aichi M6A Seiran. В походном состоянии самолеты хранили в ангаре, который находился в рубке. Все оперение гидросамолетов складывалось так, чтобы не выходить за радиус воздушного винта. Для их запуска на лодках применяли стартовую катапульту и стартовые рельсы.

Несмотря на свои недоставки, бомбардировщики Aichi M6A Seiran появись они неожиданно, могли пустить на дно американский эсминец или фрегат, нанести серьезный урон крейсеру или авианосцу. 

В целом масштабы войны на Тихом океане были таковы, что подводные авианосцы не могли принести победу Стране восходящего солнца. Даже если бы их построили значительно большей серией. Максимум, на что можно было рассчитывать, — удачное проведение воздушной разведки.

Подводные авианосцы: проект, который так и не стал успешным

Сами по себе корабли – давняя идея. Еще в конце XIX века появились так называемые аэростатоносцы.

В 1910-м американец Юджин Б. Эли впервые совершил взлет с палубы корабля на летательном аппарате, который был тяжелее воздуха. В роли авианосца выступил легкий крейсер «Бирмингем», который оборудовали взлетной платформой. 

В 1914 году приняли на вооружение первый «серьезный» авианосец: им стал британский корабль HMS Ark Royal. Он участвовал в Первой мировой и осуществлял бомбардировки позиций турецкой армии.

Вскоре потенциал палубной авиации раскрылся в полной мере. Во Вторую мировую действующие на Тихоокеанском фронте американские авианосцы сыграли решающую роль в разгроме Японии, хотя Страна восходящего солнца тоже в качестве главного орудия победы видела именно их.

В любом случае экспертам было понятно, что могучие линкоры уже никогда не смогут диктовать правила игры. А решающее значение будут иметь действия палубной авиации.

«Потаённое судно»

В 1720 году на Галерном дворе Санкт-Петербурга появился неграмотный крестьянин Ефим Никонов. Это случилось после того, как царю подали его челобитную: мол, берусь построить боевой корабль, который «будет ходить в воде потаённо». Пётр I заинтересовался, встретился с умельцем и приказал принять его на работу для постройки действующего образца.

Никонов справился за год. Его субмарина была похожа на огромную деревянную бочку, скреплённую железными обручами. Погружаться она должна была, впуская вовнутрь себя воду, всплывать – после её откачивания ручным насосом. Первое ходовое испытание проводили на Неве в присутствии царя. Изобретатель, перекрестившись, спустился внутрь «бочки». Однако погружение пошло слишком быстро, она ударилась о дно, дала течь и Никонова едва спасли.

Ещё несколько раз, после очередных доделок, умелец пытался совершить погружение, но всякий раз аппарат давал течь. Уже при Екатерине I «проект» закрыли, самоучку разжаловали в плотники и отправили строить корабли в далёкую Астрахань.

Макет потаенного судна Ефима Никонова, испытанного на озере Разлив в присутствии Петра I. Wikimedia Commons / Serguei Fadeev (CC BY-SA 3.0)

Впоследствии попытки создания российского подводных кораблей делались не раз. В 1880–1881 годах военное ведомство получило 50 субмарин конструкции Степана Джевецкого. Это были первые подлодки России, выпущенные серийно. Они несли службу на Балтике и в Чёрном море.

Как устроена служба на подводной лодке

Лодка внутри

Внутри подводная лодка представляет собой несколько отсеков. Если рассмотреть, как устроена подводная лодка на примере одного из экспонатов выставки «Из истории подводного флота России», то сразу же в первом отсеке можно видеть шесть носовых торпедных аппаратов, устройство для стрельбы, запасные торпеды.

Во втором отсеке находятся офицерские и командирские каюты, рубка специалиста по гидроакустике и комната радиоразведчика.

Третий отсек представляет собой центральный пост. В данном отсеке масса различных приборов и устройств для управления движением, погружением, всплытием.

Четвертый представляет собой кают-компании для старшин, камбуз, радиорубку. В пятом отсеке находятся три дизельных двигателя мощностью 1900 л. с. каждый. Они работают, когда лодка находится над водой. В следующем отсеке находятся три электрических двигателя для подводного хода.

В седьмом установлены торпедные аппараты, прибор для стрельбы, койки личного состава. Можно посмотреть, как устроена подводная лодка внутри. Фото позволит ознакомиться со всеми приборами и отсеками.

Подводные лодки Второй мировой войны

Современные подводные лодки России

Подводные лодки на вооружении России сейчас состоят из количества 70 суден.

Атомные подводные лодки России составляют довольно внушительную часть по статистике, но дело в том, что очень большая их часть находится то в ремонте, то на отстое и не готова ни к каким походам, будь то боевая вылазка, или обычное патрулирование.

Но тем не менее россиянам принадлежат многие рекорды мире субмарин, например, самая быстрая подводная лодка России развивает скорость до 82 км в час. Максимальная глубина погружения российских подлодок также лучшая в мире. Этот рекорд поставил «Комсомолец», погрузившись на глубину 1027 километров. Секретные подводные лодки России возможно покоряют и новые вершины, но увы эти данные не доступны в открытом доступе и возможно о них мы узнаем в будущем.

Что касается будущего? Новейшая подводная лодка России уже разрабатывается, после того как США представили свою субмарину «Virginia» российская держава не могла стоять на месте, а была вынуждена прибегнуть также к развитию своего подводного флота. Новая подлодка России будет относиться к пятому поколению, к 2030 году правительство хочет наладить регулярное производство данного вооружения. Название этому проекту также присвоили – «Хаски». На данный момент одна из самых больших лодок, выпускаемых самой большой страной мира является «Ясень», многие строили догадки о том, что новые подлодки России 5 поколения будут превосходить по размеру, но это не так, несмотря на громадное водоизмещение в 12000 тонн, как заявлено проектом. «Хаски» не станет самой большой субмариной РФ. В целом планируется производство данного типа подлодок в двух видах. Первый будет предназначен для войны только под водой, а второй для крупных наводных суден, к примеру авианосцев.

Отсеки атомной субмарины и их назначение

Многоцелевая атомная подводная лодка проекта 941 в разрезе

Традиционная компоновка включает от 5 до 8 отсеков (дублируются на лодках проекта 941) со своим назначением и определенной конфигурацией, вплоть до использованных материалов.

1. Первый отсек несет торпедные аппараты и сами торпеды на нескольких палубах, поэтому в зависимости от типа и степени автоматизации лодки может быть необитаем и находиться сразу за легким корпусом.

2. Второй отсек чаще всего используется для размещения радиооборудования: здесь находится центральный пульт управления, пульты гидроакустических систем, регуляторы микроклимата и навигационное спутниковое оборудование.

Именно на втором отсеке размещается рубка, используемая для размещения антенн, перископов. Её основная цель — наблюдение из подводного положения.

3. Третий отсек на современных российских подводных лодках проектов 949А и 955 используется в качестве радиосвязного. Многие ранние типы совмещают его с центральным отсеком управления.

4. Четвертый отсек (он же третий на ряде лодок 3-4 поколений) является жилым: тут размещены каюты экипажа, помещения отдыха, камбуз. В нём проводит время основная часть экипажа, не задействованная в работе на данный момент.

Советские и российские АПЛ между этим и последующим отсеком несет дополнительный отсеки для деконтаминации членов экипажа: очистке одежды членов команды, которые работали в отсеке с реакторами.

Ракетные шахты многоцелевых подводных лодок

5. Пятый (шестой на российских АПЛ) отсеки размещают силовую установку. В зависимости от типа реактора, дизель-генераторы могут находится с ним в одном помещении или в раздельной.

На субмаринах пятого поколения, а так же на американских АПЛ «Сивулф» используется герметичная капсула реактора, которая может полностью изолироваться от остальной лодки.

Самые современные субмарины имеют 7 и 8 отсек, где размещается центр управления реактором и турбинная установка с аккумуляторами. Такая компоновка позволяет исключить контакт с реактором.

Так же в последних отсеках может располагаться автономная капсула для спасения экипажа, созданная по типу спускаемого космического аппарата.

Дифферентовка

Эксплуатация атомных подводных лодок

Сухой док для обслуживания АПЛ типа «Огайо»

Появление атомных подводных заставило пересмотреть применение и ремонт подобных типов судов: их подводная часть имеет неподходящие для обычных портов габариты, а реакторы опасны.

Учитывая, что большая часть задач связана с длительным скрытным применением у берегов вероятного противника, поход так же должен начинаться в потайном месте — иначе лодки можно будет отслеживать с начала пути.

Аналогичные рассуждения, необходимость защиты АПЛ от вероятного удара противника, необходимость защиты окружения от возможных проблем с реакторами/вооружением привели к появлению уникальных закрытых баз размером с мегаполис.

Схема подземной базы атомных подводных лодок в Балаклавской бухте

Первая появилась в Балаклавской бухте, заняв собой колоссальную площадь отдельными помещениями, связанными туннелями и каналами: ракеты отдельно, боеголовки отдельно, лодки отдельно.

Ремонт — так же в спецзонах, так как 1-3 поколению лодок требовалась не только замена топлива, но и замена активной зоны реактора. Аналогичные комплексы были созданы уже над водой для каждого океанского флота: в Северодвинске, в Заполярье, в бухте Чажма.

АПЛ США повезло больше: военно-морская база Кингс-Бей вместила всю необходимую инфраструктуру, включая учебные центры и заводы по модернизации в одном месте с погодными условиями, исключающими проблемы во время ремонтных или погрузочных работ.

Российская база подводных лодок

Специализированные базы используются только для длительных остановок АПЛ, ремонта и погрузки ядерных материалов. Все остальное время атомные субмарины снабжаются с плавучих причалов (СССР), судов снабжения (Россия и США), оставаясь почти все время в открытом море.

Современные многоцелевые лодки часто используют обычные военно-морские порты для короткого базирования, уходя на специальные базы только при необходимости — вероятность радиоактивного загрязнения среды при их эксплуатации низкая.

Типы корпусов

Литература и источники информации

  • Branfill-Cook Roger Torpedo: The Complete History of the World’s Most Revolutionary Naval Weapon. — Barnsley, England: Seaforth Publishing, 2014. — 256 с. — ISBN 9781848322158
  • А.Е. Тарас История подводных лодок 1624—1904. — Москва: ACT, 2002. — 240 с. — (Библиотека военной истории). — ISBN 5-1 7-007307-0
  • А.Е. Тарас Торпедой — пли! История малых торпедных кораблей. — Минск: Харвест, 1999. — 368 с. — (Библиотека военной истории). — 11000 экз. — ISBN 985-433-419-8
  • Кузьмин А. Записки по истории торпедных катеров. — Москва: Военмориздат НКВМФ СССР, 1939. — 136 с.
  • А.Е. Тарас История торпедных катеров XIX-XX веков. — Минск: Харвест, 2005. — 416 с. — (Библиотека военной истории). — 2500 экз. — ISBN 985-13-3025-6

Ссылки

General construction of torpedo tubes(англ.)The Fleet Type Submarine Online 21-Inch Submerged Torpedo Tubes(англ.)Wikipedia(англ.)Rotating central torpedo tubes(англ.)Подводные ЛодкиProjekt Torpedo Vorhaltrechner (пол.)S-Boote in der Kriegsmarine 1935—1945(нем.)

Авиационные системы сброса торпед

Дифферентовка

Комментировать
0